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7.1 Integrating functions of one variable

A foundation idea in calculus is the concept of integration. The integral measures the area under the curve
defined by the variation in a function over a range of its variable. In modeling physical processes, we are often
interested in summing the value of one property (the given function) times the incremental change in another
property (the variable). Pressure-volume work done by a gas is calculated by summing the pressure (the function)
times the incremental change in volume (the variable) as the volume is varied. The computed pressure-volume work
is the area under the pressure curve over a range of volume. In this section, we explore the definition of the integral
and review the most commonly applied methods of integrating a function of one variable.

7.1.1 The concept of the antiderivative and definition of the integral

We can think of an integral as an antiderivative. While differentiation is an
operation that transforms a function into its derivative, integration is an
operation that transforms the derivative of a function back to the original
function. Consider the derivative of a function f (x) with respect to the
variable x defined

d
dx

f (x) = f ′(x)

Rearranging this result, we find an expression for the total differential:

d f (x) = f ′(x)dx

This expression relates the change in the function f (x) resulting from an
incremental change in the variable dx. We can then define the integral as the
operation that transforms the incremental change d f (x) into the function f (x)
itself:

f (x) =
∫

d f (x) =
∫

f ′(x)dx (7.1)

The integral is the antiderivative because it transforms the derivative of a
function into the function itself.

We developed a good working knowledge of differentiation in Chapter 3.
That means we already know something about integrals as antiderivatives.
For example, for x raised to a power n, we know that

f (x) =
1
n

xn ⇒ f ′(x) = xn−1
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144 integrating functions of one variable

1 This form of integral, for which the
range of x is unspecified, is known
as an indefinite integral.

2 The fact that the definite integral
of a function over an interval is
equal to the difference between the
antiderivatives of the function evalu-
ated at the endpoints of the interval
is known as the fundamental theorem
of calculus.. The theorem was first
presented by Scottish mathemati-
cian and astronomer James Gregory
(1638-1675) and English theologian
and mathematician Isaac Barrow
(1630-1677). The theorem was built
upon by Barrow’s student Isaac New-
ton (1642-1727) and systematized
by Gottfried Leibniz (1646-1716) who
introduced the notation commonly
used today.

3 This form of integral, for which the
range of x is specified, is known as a
definite integral.

which implies that1 ∫
f ′(x)dx =

∫
xn−1 dx =

1
n

xn = f (x)

Similarly, for the exponential function, we know that

f (x) =
1
a

eax ⇒ f ′(x) = eax

so that
f (x) =

∫
f ′(x)dx =

∫
eax dx =

1
a

eax

For the natural logarithm, we find

f (x) = ln(x) ⇒ f ′(x) =
1
x

so that
f (x) =

∫
f ′(x)dx =

∫
1
x

dx = ln(x)

Finally, for the sine and cosine functions, we find

f (x) = −1
a

cos(ax) ⇒ f ′(x) = sin(ax)

so that
f (x) =

∫
f ′(x)dx =

∫
sin(ax) dx = −1

a
cos(ax)

and
f (x) =

1
a

sin(ax) ⇒ f ′(x) = cos(ax)

so that
f (x) =

∫
f ′(x)dx =

∫
cos(ax) dx =

1
a

sin(ax)

Thinking of integration as antidifferentiation, our knowledge of differentia-
tion immediately translates into a knowledge of integration. Taking any total
derivative relation, we have a relation for an indefinite integral.

7.1.2 Interpretation of the integral

The derivative is interpreted as the rate of change in a function for a given
value of its variable. The integral sign

∫
is an elongated S standing for

summation. The process of integration is the process of summing the area
under the curve of the function being integrated.2

Let’s explore the interpretation of the integral through the example of
determining the pressure-volume work done by an ideal gas at constant
temperature, defined

w =

∫VB

VA

p(V)dV =

∫VB

VA

nRT
V

dV

where we have used the ideal gas equation of state pV = nRT to define
p(V) = nRT

V .3 The function to be integrated, in this case p(V), is known as the
integrand. The factor nRT is a constant independent of V and can be pulled
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integration in one and many dimensions 145

4 Note that f (x)
∣∣∣
x2

x1
= f (x2)− f (x1).

V

p(V)

VA VB

p(V)

Figure 7.1: The integral of p(V)
between VA and VB is the area
under the curve. The integral can
be approximated by the sum of the
shaded rectangular areas

N

∑
n=1

p(Vn)∆V

where Vn = VA + (n − 1)∆V.
For finite ∆V this approximation
overestimates the exact integral.

V

p(V)

VA VB

p(V)

Figure 7.2: Alternatively, the integral
can be approximated by the sum
of the shaded rectangular areas
p(Vn)∆V where Vn = VA + n∆V.
For finite ∆V this approximation
underestimates the exact integral.

out of the integral, leaving

w = nRT
∫VB

VA

1
V

dV

From our antiderivative relations in the previous section, we know that∫
1
x

dx = ln(x)

so that4

w = nRT
∫VB

VA

1
V

dV = nRT ln(V)
∣∣∣
VB

VA
= nRT ln

(
VB
VA

)

where we have used the fact that ln(VB)− ln(VA) = ln
(

VB
VA

)
.

What is the physical interpretation of this result? We interpret the integral
as the antiderivative. As such, the integral represents the summing up of
many small changes in the work dw = p(V)dV that take place over many
small changes in volume

w =

∫
dw =

∫
p(V) dV

Each increment of the work dw is the area formed by the height of the
function p(V) times the width resulting from a change in volume dV.

Figure 7.1 shows p(V) as a function of volume V between the volumes
VA and VB. Suppose we divide the interval [VA, VB] into N subintervals
[V1, V2], [V2, V3], ..., [VN , VN+1] where V1 = VA, VN+1 = VB and Vn = VA +

(n − 1)∆V. The width of each interval is ∆V = (VB − VA)/N. We can
approximate the integral defined as the area under the curve using the sum

w ≈ p(V1)∆V + p(V2)∆V + . . . + p(VN)∆V

=
N

∑
n=1

p(Vn)∆V

which is the sum of the areas of N rectangles each of width ∆V and height
p(Vn). Each shaded area is an increment of work dw. The integral is the sum
of many of these areas adding up to the total change w.

As N increases, the number of rectangles increases and the accuracy of the
estimate to the area under the curve improves. In the limit N → ∞, the sum
converges to the exact result

w = lim
N→∞

N

∑
n=1

p(Vn)∆V =

∫VB

VA

p(V)dV (7.2)

The area under the curve between the lower limit of integration VA and the
upper limit of integration VB represents the definite integral of p(V) taken
between VA and VB.

Our choice of the height of each rectangle as the leftmost point in the
interval was arbitrary. We could just as well take the rightmost point in the
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146 integrating functions of one variable

5 The results in Equations 7.2 and 7.3
are known as left method and right
method Riemann sums, respectively.
Alternative definitions include the
maximum method and minimum
method for which the height of each
rectangle is defined by the endpoint
with the larger or smaller value,
respectively.

interval to be the height of the rectangle. In that case, the sum approximating
the integral is

w = lim
N→∞

N

∑
n=1

p(Vn+1)∆V =

∫VB

VA

p(V)dV (7.3)

which represents the shaded area in Figure 7.2. Note that for finite ∆V > 0,
the first approximation using the leftmost point in the interval leads to an
overestimate of the area under the curve. In contrast, using the rightmost
point in the interval leads to an underestimate of the area under the curve.
Nevertheless, in the limit ∆V → 0 both approximations lead to the same exact
result.

With these insights, we can develop a general definition of the integral in
terms of the Riemann sum. Suppose we partition the interval [VA, VB] into N
subintervals [V1, V2], [V2, V3], ..., [VN , VN+1] where VA = V1 < V2 < . . . < VN <

VN+1 = VB. The integral of p(V) between VA and VB can be approximated by
the sum

w = lim
N→∞

N

∑
n=1

p(V∗n )∆Vn =

∫VB

VA

p(V)dV (7.4)

where V∗n ∈ [Vn, Vn+1] and ∆Vn = Vn+1 −Vn. An example of a Riemann sum
having subintervals of varying width ∆Vn and randomly chosen points V∗n
within each subinterval is shown in Figure 7.3.

V

p(V)

VA VB

p(V)

Figure 7.3: The integral of p(V)
between VA and VB can be approxi-
mated by the Riemann sum

N

∑
n=1

p(V∗n )∆Vn

where V∗n ∈ [Vn, Vn+1] and ∆Vn =
Vn+1 − Vn. As N → ∞ the sum
converges to the exact result.

In our previous sums, the subintervals ∆Vn were of uniform width. In
this Riemann sum, the intervals Vn may be of varying width. Moreover, in
our previous sums the height of each rectangle was taken to be the value of
p(V) for the leftmost or rightmost point in the interval. In the Riemann sum,
the height of the rectangle is taken to be p(V∗n ) where V∗n is any point in the
interval [Vn, Vn+1].5
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6 The derivative of a function is
equal to the derivative of the same
function plus a constant

d
dx

f (x) =
d

dx
( f (x) + C)

As such, the antiderivative of a
function equals the integral of that
function plus a constant∫

d f (x) = f (x) + C

The integration constant C is undeter-
mined for an indefinite integral. It
can be evaluated once the limits of
integration are defined.

We can now combine our definition of the derivative given by Equation 3.2

lim
∆x→0

f (x + ∆x)− f (x)
∆x

=
d f
dx

with our equivalent definition of the integral

lim
N→∞

N

∑
n=1

f (xn)∆x =

∫
f (x)dx (7.5)

These geometric interpretations of the derivative and integral in terms of
finite differences ∆x in the variable x are useful in numerically estimating
derivatives and integrals when the indefinite integrals or exact derivatives are
not known. By performing the sum for increasing values of N and decreasing
values of ∆x, we find an increasingly accurate approximation of the integral.

7.1.3 Revisiting the rules for integrating functions of one variable

There are a number of useful rules for integrating functions of one variable.
We introduce these rules by exploring the integration of a variety of com-
monly appearing functional forms. It is important to practice and master
these rules. They are essential to our successful application of calculus to
problems in the physical sciences.

1. d f (x). Integration of the exact differential of a function leads to the
function itself plus an integration constant6 written C:∫

d f (x) = f (x) + C (7.6)

For example, suppose d f (x) = dx, then∫
d f (x) =

∫
dx = x + C

In evaluating indefinite integrals, it is important to remember to include
the integration constant C.

2. a. Integration of a constant produces a linear function plus an integration
constant: ∫

a dx = a
∫

dx = ax + C (7.7)

Differentiation of the result produces a. Note that when we have a con-
stant times a function of x, we can pull the constant out of the integral
as shown above. Pulling the constant out in front of the integral can be
helpful in simplifying the integration of complicated expressions.

3. xn. Using our knowledge of the power rule for derivatives of powers of x,
we find ∫

xn dx =
1

n + 1
xn+1 + C n 6= −1 (7.8)

Let’s use this result to evaluate the integral∫
v0 t dt
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148 integrating functions of one variable

xa b

1
x

ln
( x

a
)

Figure 7.4: The function 1
x over a

range of x (red line). The integral
of 1

x between x = a and x = b is
the shaded area under the curve.
The accumulating area under the
curve ln

( x
a
)

(black line) is 0 at x = a
and grows to the final value of the

integral ln
(

b
a

)
at x = b.

7 Here we treat the derivative dc
dt

as a fraction, which allows us to
separate the incremental change
in concentration, dc, from the
incremental change in time, dt.

We find ∫
v0 t dt = v0

∫
t dt =

1
2

v0 t2 + C

Further consider the integral ∫
∆H
RT2 dT

Using our result we find∫
∆H
RT2 dT =

∆H
R

∫
1

T2 dT = −∆H
R

1
T
+ C

Differential and integral relations of this kind are commonly encountered
in thermodynamics.

4. x−1. Using our knowledge of the derivative of the natural logarithm, we
find the indefinite integral ∫

1
x

dx = ln x + C (7.9)

The definite integral of 1
x over the range x ∈ [a, b] can be written∫ b

a

1
x

dx = ln x
∣∣∣
b

a
= ln(b)− ln(a) = ln

(
b
a

)

This result is shown graphically in Figure 7.4. The integral is equal to the
shaded area under the curve. The black line shows the accumulating area
under the curve, which increases according to ln

( x
a
)
.

In the kinetics of certain reactions, the rate of change in the concentra-
tion c(t) is proportional to the concentration itself. As the rate of change in
c(t) is dc/dt, this proportional relationship can be written

dc
dt

= −kc (7.10)

By separating dc from dt and dividing each side by c, this equation can be
reformed as

1
c

dc = −k dt

where k is a constant.7 We can solve this equation for c(t). Using our
knowledge of integrals, we can transform the result∫

1
c

dc = −
∫

kdt

into a relation for the concentration as a function of time

ln c(t) = −kt + C

By exponentiating each side of this equation, the result can also be ex-
pressed as

c(t) = Ae−kt

where A = eC.
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8 Known as the Clausius-Clapeyron
equation, this relation describes the
dependence of the vapor pressure
on temperature. Note that we
treat dp

dT as an algebraic ratio,
which allows us to separate the
incremental changes dp and dT.

xa b

e−x

e−a − e−x

Figure 7.5: The function e−x over a
range of x (red line). The integral of
e−x between x = a and x = b is the
shaded area under the curve. The
accumulating area under the curve
e−a − e−x (black line) is 0 at x = a
and grows to the final value of the
integral

(
e−a − e−b) at x = b.

As another example, consider the following fundamental relation8 in
thermodynamics:

dp
dT

=
∆H
RT2 p (7.11)

By separating dp from dT and dividing each side by p, this equation can
be reformed as

1
p

dp =
∆H
RT2 dT

We solve the latter equation for p(T) using our knowledge of integrals as∫
1
p

dp =
∆H
R

∫
1

T2 dT

and
ln p = −∆H

RT
+ C

This can be rewritten in the familiar form

p(T) = A exp
(
−∆H

RT

)

where ln A = C. Inserting our result in Equation 7.11 demonstrates the
validity of our solution.

5. f (x) + g(x). Integration is a linear operation, like multiplication or dif-
ferentiation. The integral of the sum of two functions is the sum of two
integrals: ∫

[ f (x) + g(x)] dx =

∫
f (x)dx +

∫
g(x)dx (7.12)

For example, consider the integral of the function Cp(T) = a + bT + cT2

over T, where a, b, and c are constants. We find∫
Cp(T)dT =

∫ (
a + bT + cT2

)
dT = a

∫
dT + b

∫
TdT + c

∫
T2dT

= aT +
1
2

bT2 +
1
3

bT3 + C

The integration of each term in Cp(T) increases the power of T. As we
are taking an indefinite integral, it is important to include the integration
constant C in our final result.

6. eax. Using our knowledge of the derivative of the exponential function, we
find ∫

eaxdx =
1
a

eax + C (7.13)

For example, consider the indefinite integral over a function c(t) with
respect to t, where c(t) = C0 e−t/τ and C0 and τ are constants. We find∫

C0 e−t/τdt = C0

∫
e−t/τdt = −C0τ e−t/τ + C

Further consider the definite integral of e−x over the range x ∈ [a, b]. We
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x

f (x)

0 a bx0

1

δ(x − x0)

θ(x − x0)

Figure 7.7: The function δ(x − x0)
over a range of x, where the black
arrow located at x = x0 is directed
toward a single point at infinity.
The integral of δ(x − x0) between
x = a and x = b is the accumulating
area under the curve (red line)
represented by the Heaviside step
function θ(x − x0), which is 0 for
x < x0 and unity for x ≥ x0.

9 The English physicist Paul Dirac
(1902-1984) made fundamental
contributions to quantum theory.

find ∫ b

a
e−x dx = −e−x

∣∣∣
b

a
= e−a − e−b

This result is shown graphically in Figure 7.5. The decaying exponential is
commonly encountered in physical kinetics, where it is used to model a
decreasing population of species.

7. sin(ax) and cos(ax). Using our knowledge of derivatives of sine and
cosine functions, we find∫

sin(ax) dx = −1
a

cos(ax) + C (7.14)∫
cos(ax) dx =

1
a

sin(ax) + C (7.15)

For example, consider the integral over a sinusoidal function∫π

0
sin(x)dx = − cos(x)

∣∣∣
b

a
= cos(a)− cos(b)

This result is shown graphically in Figure 7.6.

xa b

sin(x) cos(a)− cos(x)

Figure 7.6: The function sin(x) over
a range of x (red line). The integral
of sin(x) between x = a and x = b
has both positive (shaded red) and
negative (shaded gray) contributions.
The accumulating area under the
curve cos(a)− cos(x) (black line) is 0
at x = a and grows to the final value
of the integral (cos(a)− cos(b)) at
x = b.

The sinusoidal function takes on positive and negative values which
add and subtract from the total area under the curve. The result is an
accumulating area that oscillates as the contributions from positive and
negative regions of the sine are summed.

8. δ(x − x0). The Dirac delta function (or δ function) was discovered by
Paul Dirac9 and plays an important role in the mathematics of quantum
mechanics. While the function may seem strange, in some ways, the
integral over the δ function could not be simpler. The function δ(x− x0) is
zero everywhere except at the point x = x0, where it is infinite:

δ(x− x0) =

{
∞ x = x0

0 x 6= x0
(7.16)
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10 Note that as the Heaviside step
function is related to the integral
over the delta function as

θ(x− x0) =

∫ x

−∞
δ(x′ − x0)dx′

it follows that the derivative of the
Heaviside step function

dθ(x− x0)

dx
= δ(x− x0)

is the delta function.

The area under the function when integrated over a range of x containing
x0 is unity, as ∫∞

−∞
δ(x− x0) dx = 1

An attempt to graphically depict the Dirac delta function is shown in
Figure 7.7.10

Consider the integration over all space of the delta function multiplying
a function f (x). The product of f (x)δ(x− x0) is zero everywhere except at
x = x0, so that∫∞

−∞
f (x)δ(x− x0) dx = f (x0)

∫∞

−∞
δ(x− x0) dx = f (x0)

Note that we can pull the term f (x0) out of the integral as it is a constant.
We will explore the utility of the delta function later in this chapter.

9. e−ax2
. The gaussian function has many important applications in the

physical sciences. There is a simple closed form solution for the definite
integral of the gaussian function over all space:∫∞

−∞
e−ax2

dx =

√
π

a
(7.17)

This fundamentally important result is widely used in applications of
integration in the physical sciences. The identity is proven in the comple-
ments.

xb0

1√
π

e−x2

1
2 erf(x)

Figure 7.8: The function 1√
π

e−x2

over a range of x (red line). The
integral of e−x2

between x = 0 and
x = b is the shaded area under the
curve. The accumulating area under
the curve 1

2 erf(x) (black line) is zero
at x = 0 and grows to the final value
1
2 erf(b) at x = b.

The integral over a gaussian function occurs frequently in the physical
sciences. It is called the error function and is defined

erf(x) =
2√
π

∫ x

0
e−t2

dt (7.18)

The error function is positive for positive values of x, representing the area
under the gaussian function over the range [0, x] (see Figure 7.8). There is
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152 integrating functions of one variable

11 Using the fact that

dy
dx

= − 1
x2

we multiply both sides of the
expression by dx to find

dy = − 1
x2 dx

also a complementary error function that is defined

erfc(x) =
2√
π

∫∞

x
e−t2

dt = 1− erf(x) (7.19)

and represents the area under the gaussian function not included in the er-
ror function. As such, erf(x) + erfc(x) = 1 (see Figure 7.8). Numerical values
of the error function and complementary error function are tabulated in
Supplement S7.

The rules of integration above provide us with the foundation of knowl-
edge we need to address problems in the physical sciences that involve the
integration of functions.

7.1.4 Useful tricks for integrating functions of one variable

In addition to using the fundamental rules of integration previously intro-
duced, we can add to our toolbox a few basic tricks that will prove useful in
performing integrals on more complicated functions.

1. Algebraic substitution. In differentiation we encountered complicated
expressions that were simplified using an algebraic substitution of variables.
For example, consider the function

f (x) = e−
1
x

Taking the derivative of this function with respect to x can be simplified by
introducing the variable

y =
1
x

where
dy
dx

= − 1
x2

Using the chain rule defined

d f
dx

=
d f
dy

dy
dx

the derivative of f (x) with respect to x can be expressed as

d
dx

(
e−

1
x

)
=

d
dy

e−y dy
dx

= −e−y
(
− 1

x2

)
=

1
x2 e−1/x

We can use a similar trick in integration. Suppose we want to integrate the
function

f (x) =
1
x2 e−

1
x

This looks hard! We first simplify the function with the substitution11

y =
1
x

dy = − 1
x2 dx

This allows us to write∫
1
x2 e−

1
x dx = −

∫
e−y dy = e−y + C = e−

1
x + C
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12 Using this trick we can show that
the integral∫

e
− ∆E

kB T

(
∆E

kBT2

)
dT

with the substitution of variables
u = − ∆E

kB T is equal to

e
− ∆E

kB T + C

where as a final step we convert back to the original variable x. This
example demonstrates how a clever substitution of variables turns an
apparently challenging integral into a problem with a familiar solution. 12

Further consider the example∫
1

V − nb
dV (7.20)

We make the algebraic substitution commonly referred to as u-substitution

u = V − nb
du
dV

= 1 du = dV

Inserting these results in our integral, we find∫
1

V − nb
dV =

∫
1
u

du = ln u + C = ln (V − nb) + C

While the proper substitution may be apparent in this example, in other
cases careful consideration and trial and error may be required to identify
the optimal u-substitution.

Finally, consider the example∫
cos2 x sin x dx

We make the algebraic substitution

u = cos x du = − sin x dx

and find ∫
cos2x sin x dx = −

∫
u2 du = −1

3
u3 + C = −1

3
cos3x + C

A wide range of integrals can be solved using algebraic substitution,
including integrals involving polynomial, exponential, and sinusoidal
integrands. Algebraic substitution is particularly valuable in the physical
sciences, as the proper substitution of variables can convert a complicated
integrand into a simplified and manageable function.

2. Trigonometric transformation. Consider the integral∫
sin2x dx

We know how to integrate sin x but not sin2 x. Fortunately, we can get
rid of the square by transforming the expression using the trigonometric
transformation

sin2 x =
1
2
(1− cos(2x))

so that ∫
sin2x dx =

∫
1
2
(1− cos(2x)) dx =

1
2

∫
dx− 1

2

∫
cos(2x) dx

=
1
2

x− 1
4

sin(2x) + C
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154 integrating functions of one variable

13 The method of partial fractions is
a special case of the more general
Heaviside cover-up method named
for English physicist and engineer
Oliver Heaviside (1850-1925).

14 We can prove this

1
(b− a)

(
1

a−x
− 1

b−x

)

=
1

(b−a)

[
b−x

(a−x)(b− x)
− a−x
(a−x)(b−x)

]

that can be simplified as

1
(b− a)

[
b−x−(a−x)
(a−x)(b−x)

]
=

1
(a−x)(b−x)

xa b

1
(a−x)(b−x)

1
(a−x)

−1
(b−x)

Figure 7.9: The function 1
(a−x)(b−x)

(black line) alongside the partial
fractions 1

a−x (red line) and −1
b−x

(blue line) over a range of x.

When you encounter an integral over a trigonometric function that you
don’t recognize, consider trigonometric identities that might transform the
integral into a solvable form.

3. Partial fractions. For an integral like Equation 7.20, the numerator dV is a
derivative of the denominator (V − nb). In that case, the integral can be
solved using algebraic substitution. However, for the integral∫

1
(a− x)(b− x)

dx

the numerator dx is not the derivative of the denominator (a− x)(b− x). In
this case, we can reform our integral using partial fractions.13

We can make use of a clever identity relating the product of the recipro-
cal differences to the difference of the reciprocal differences.14 It is written
as

1
(a− x)(b− x)

=
1

(b− a)

(
1

a− x
− 1

b− x

)

and leads to the equality∫
1

(a− x)(b− x)
dx =

∫
1

(b− a)

(
1

a− x
− 1

b− x

)
dx

As such, we can evaluate these integrals using our knowledge of the
integral identity ∫

1
(x + a)

dx = ln(x + a) + C

It follows that ∫
1

(b− a)

(
1

a− x

)
dx = − 1

b− a
ln(a− x) + C

and ∫
1

(b− a)

(
1

b− x

)
dx = − 1

b− a
ln(b− x) + C

resulting in ∫
1

(a− x)(b− x)
dx =

1
b− a

ln
(

b− x
a− x

)
+ C

The transformation of 1
(a−x)(b−x) using partial fractions is graphically

depicted in Figure 7.9. It is somewhat remarkable that the product of
the reciprocal functions (a − x)−1 and (b − x)−1 is proportional to the
difference of the two functions.

4. Integration by parts. A final trick for evaluating integrals found in the
physical sciences is known as integration by parts. Recall the product rule

d
dx

[u(x)v(x)] = u(x)
dv
dx

+ v(x)
du
dx

Multiplying both sides of the equation by dx results in

d (uv) = udv + vdu
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15 Integration by parts was first in-
troduced by English mathematician
Brook Taylor (1685-1731).

16 We have used the identity∫
d f (x) = f (x)

to write ∫
d(uv) = uv

17 To find v we integrate dv as

v =

∫
dv =

∫
e−ax dx = −1

a
e−ax

while du is the total differential dx.

18 We use the result

1
a

xe−ax
∣∣∣
∞

0
= 0

At the lower limit xe−ax is zero
when x = 0. For the upper limit we
find

lim
x→∞

xe−ax = 0

This can be shown using l’Hôpital’s
rule as

lim
x→∞

x
eax = lim

x→∞

1
aeax = 0

which can be reformed as

udv = d (uv)− vdu

Integrating both sides of this equation leads to15∫
udv = uv−

∫
vdu (7.21)

This relation expresses one integral
∫

udv, which may be challenging to
evaluate, in terms of another integral

∫
vdu, which may be easier to solve,

and a surface term uv, which is often zero. Equation 7.21 serves as our
starting point for integration by parts.16

Let’s see how this works. Consider the integral∫∞

0
xe−ax dx =

∫
udv

We decompose xe−axdx = u dv as17

u = x dv = e−ax dx

du = dx v = −1
a

e−ax (7.22)

Combining these results with Equation 7.21, we find18∫∞

0
xe−ax dx =

∫
udv = uv−

∫
vdu

= −1
a

xe−ax
∣∣∣
∞

0
−

∫∞

0

(
−1

a
e−ax

)
dx = − 1

a2 e−ax
∣∣∣
∞

0
=

1
a2

As a final example of integration by parts, consider the indefinite integral∫
x sin x dx =

∫
udv

We decompose x sin x dx = u dv as

u = x dv = sin x dx

du = dx v = − cos x (7.23)

Combining these results with Equation 7.21, we find∫
x sin x dx =

∫
udv = uv−

∫
vdu

= −x cos x +

∫
cos x dx

= −x cos x + sin x dx + C

where C is an undetermined integration constant.

This concludes our review of useful rules for integrating functions of
one variable. In the physical sciences, we often encounter functions of many
variables. In the next section, we apply the rules for integrating functions of
one variable to the integration of functions of many variables.
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156 integrating functions of many variables

x

f (x)

a b
Figure 7.10: The function f (x)
shown over a range of x from [a, b].
The integral

∫b
a f (x) dx equals the

shaded area under the curve.

7.2 Integrating functions of many variables

Functions of more than one variable are commonly encountered in modeling the properties of physical
systems. The concentration of a substance in three-dimensions is a function of the position in space defined by the
values of three cartesian coordinates. The total amount of substance in a given volume of solution is the multiple
integral of the concentration taken over all three coordinates. In this section, we explore the definition of multiple
integrals and survey common methods for evaluating multiple integrals over functions of many variables.

7.2.1 Double integrals

We represent the integral of a function of one variable f (x), taken between
points x = a and x = b, as ∫ b

a
f (x) dx

We interpret this integral to be the area under the curve formed by f (x) over
x ∈ [a, b]. An example is shown in Figure 7.10, where the shaded area is the
value of the integral. This concept can be generalized to integrals of functions
of many variables.

In two dimensions, we represent the double integral of a function f (x, y),
taken over a rectangular area on the xy-plane defined by x ∈ [a, b] and
y ∈ [c, d], as ∫ d

c

∫ b

a
f (x, y) dxdy

We interpret this double integral to be the volume under the surface formed
by f (x, y) over the rectangular area. An example is shown in Figure 7.11,
where the shaded volume is the value of the integral.

Figure 7.11: The function f (x, y)
shown as a surface over a rectangu-
lar region on the xy-plane formed by
x ∈ [a, b] and y ∈ [c, d]. The integral∫d

c
∫b

a f (x, y) dxdy equals the shaded
volume under the surface.

It is important to understand the notation used for a double integral. For
a double integral, the order of integration is indicated by the order of the
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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increments dx and dy in the expression. Consider the integral∫ d

c

∫ b

a
f (x, y) dxdy =

∫ d

c

[∫ b

a
f (x, y) dx

]
dy

Integration over x is performed first, followed by integration over y. Note that
the antiderivative is defined strictly for functions of one variable (see Equa-
tion 7.1). As such, the definition of the indefinite integral does not immediately
extend to functions of many variables.

Figure 7.12: The function f (x, y) = c
over a rectangular region on the xy-
plane formed by x ∈ [0, a] and y ∈
[0, b]. The integral

∫b
0
∫a

0 f (x, y) dxdy
equals the shaded volume V = abc.

Let’s consider a simple example to see how the double integral works.
Suppose we wish to integrate the constant function f (x, y) = c over an area
defined by x ∈ [0, a] and y ∈ [0, b] (see Figure 7.12). Since the function is a
constant, we can write ∫ b

0

∫ a

0
f (x, y) dxdy = c

∫ b

0

∫ a

0
dxdy

Since the limits of integration over x do not depend on y, we can separate the
integral over x from the integral over y as

c
∫ b

0

∫ a

0
dxdy = c

∫ b

0
dy×

∫ a

0
dx

We have now reduced our two-dimensional integral to two one-dimensional
integrals that we can readily evaluate to find

c
∫ b

0
dy×

∫ a

0
dx = cb

∫ a

0
dx = cba

The value of the double integral is the height of the function, c, times the area
over which the integral is performed on the xy-plane, ab, which is the volume
abc.
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x

y

y = 2x

y = x2

(2, 4)

(0, 0)

Figure 7.13: The curves defined by
y = 2x (blue line) and y = x2 (red
line) intersecting at the points (0, 0)
and (2, 4) with the area between the
curves shaded red.

19 Note the we have taken the
integrand to be unity.

7.2.2 Double integrals and the order of integration

Not all integrals on the xy-plane are as simple as our previous example. Con-
sider the challenge of finding the area between a straight line and intersecting
parabola shown in Figure 7.13. We define the area as the double integral over
the xy-plane restricted to the area between the curves.

Suppose we wish to first integrate over x. As the integral is restricted to
the area between the curves, the lower and upper bounds of the integral in
x will depend on the particular value of y. The lower bound for integration
over x is defined by the straight line so that x =

y
2 while the upper bound for

integration over x is defined by the parabola so that x =
√

y. Integration over
y follows integration over x with the lower and upper bounds of y = 0 and
y = 4, respectively.

With this understanding we can write a formula for the area between the
curves in terms of the double integral19

∫4

0

∫√y

y/2
dxdy =

∫4

0

[∫√y

y/2
dx

]
dy

Evaluating the inner integral, we find∫4

0

[∫√y

y/2
dx

]
dy =

∫4

0

[
x
]√y

y/2
dy =

∫4

0

(√
y− y

2

)
dy

We now have two definite integrals to complete, as∫4

0

(√
y− y

2

)
dy =

[
2
3

y3/2 − 1
4

y2
]4

0
=

2
3

43/2 − 1
4

42 =
4
3

Conversely, this integral can also be evaluated by first integrating over y
followed by integration over x:∫2

0

∫2x

x2
dydx =

∫2

0

[∫2x

x2
dy

]
dx =

∫2

0

(
2x− x2

)
dx =

4
3

So we see that the order of integration does not matter. This will be true for
most of the integrals of interest to us.

7.2.3 Double integrals of separable functions

The examples above demonstrate that integration over x and y can be coupled
by integrating over areas that make the limits of integration over x dependent
on y (and vice versa). However, integration over x and y can also be coupled
when f (x, y) is a non-separable function of x and y and f (x, y) 6= g(x)h(y).

Fortunately, most of the integrals of interest in the physical sciences are
taken over separable functions. When f (x, y) = g(x)h(y) we can write∫ d

c

∫ b

a
f (x, y) dxdy =

∫ d

c

∫ b

a
g(x)h(y) dxdy

=

∫ d

c
h(y) dy×

∫ b

a
g(x) dx
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20 The classic text is known as
Gradshteyn and Ryzhik or simply
GR which still serves as a valuable
compendium of results for definite
and indefinite integrals.

Izrail S. Gradshteyn and Iosif M.
Ryzhik. Table of Integrals, Series,
and Products [1943]. Academic
Press, eighth edition, 2014. ISBN
0-12-384933-0

This reduces the two-dimensional integral over the xy-plane to a product of
two one-dimensional integrals. Separability will often depend on the right
choice of coordinate systems. To better understand this critical idea, we will
explore in detail a variety of examples involving the integration of separable
functions of many variables.

7.2.4 Double integrals and the Tables of Integrals

A valuable application of integration in many dimensions involves determi-
nation of the area or volume of a geometric object. The area or volume can
be determined by integration over the area or volume of the object where the
integrand is unity.

x

y

1

1−1

−1

x2 + y2 = 1

Figure 7.14: One quadrant of the
unit circle with area equal to π

4 .

Consider the evaluation of the area of a circle shown in Figure 7.14. We
can divide and conquer this integral by first performing the integration over
one quadrant. We then multiply that result by four. In that case, we wish to
determine the shaded area of the quarter circle. The range of integration of x
depends on the value of y as along the perimeter of the circle x =

√
1− y2.

As such, the range of integration in x will have a lower bound of 0 and upper
bound of x =

√
1− y2. The range of integration of y is from 0 to 1. With this

understanding, we can write the integral over the quadrant as∫1

0

∫√1−y2

0
dxdy =

∫1

0

√
1− y2 dy

What do we do now? While we have reviewed methods for performing
integrals of a single variable, nothing in our survey prepared us for this
integral.

We will find that for many integrals of interest, the best way to solve
them is to look up the result in a table of integrals.20 Tables of definite and
indefinite integrals sufficient to perform the problems in this text are included
in Supplements S5 and S6. These tables include the result∫ a

0

√
a2 − x2 dx =

[
1
2

[
x
√

a2 − x2 + a2 sin−1
( x

a

)]]a

0
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x

y

Figure 7.15: The plane polar coor-
dinate system in two-dimensions
showing the volume element
dA = r drdθ (bold). The range of
variables is defined by 0 ≤ r < ∞
and 0 ≤ θ < 2π.

Using this result for our case of a = 1, we find∫1

0

√
12 − x2 dx =

1
2

sin−1(1) =
1
4

π

This is the area over one quadrant of the unit circle. Four times this result is
our answer to the original problem, to determine the area of the unit circle.
The area of the unit circle is π.

7.2.5 Double integrals and the choice of coordinate system

The evaluation of the integral representing the area within the unit circle was
somewhat complicated in cartesian coordinates. Cartesian coordinates have
a natural square symmetry while the unit circle has round symmetry. Let’s
evaluate the integral again in plane polar coordinates, which better reflect the
round symmetry of the unit circle.

Using the coordinate transformations explored in Chapter 1 and depicted
in Figure 7.15, we can transform the integral over a quarter of the unit circle
in two-dimensional cartesian coordinates to plane polar coordinates as∫1

0

∫√1−y2

0
dxdy =

∫π/2

0

∫1

0
r drdθ =

∫π/2

0
dθ ×

∫1

0
r dr

=
π

2
×

∫1

0
r dr =

π

2
× 1

2
=

π

4

Multiplying this answer by 4 leads to the result that the area of the unit circle
is π. However, in evaluating the integral in plane polar coordinates there
is no need to break the integral into integrals over quarter circles as was
required in cartesian coordinates. We can perform the integral at once over
the whole unit circle as∫2π

0

∫1

0
r drdθ =

∫2π

0
dθ ×

∫1

0
r dr = 2π ×

∫1

0
r dr = 2π × 1

2
= π

Much simpler! Note that in cartesian coordinates, the integrals over x and y
were coupled through the limits of integration. In plane polar coordinates,
the integrals over r and θ are separable. The take home lesson is that the
right choice of coordinate system, in which the variables reflect the natural
symmetry of the function, can make the work of integration much easier.

7.2.6 Double integrals and the delta function

Suppose we want to determine the length of the circumference of a circle
using an integral along the line forming the circle. We can accomplish this
using the delta function. Let’s start with the double integral over the xy-plane
expressed in plane polar coordinates∫2π

0

∫∞

0
r drdθ

Now suppose we insert in the integrand δ(r− a). This makes the integrand
zero unless r = a, which defines the perimeter of a circle. In that case, the
integral over the xy-plane will be reduced to an integral over the perimeter of
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21 Here we use the identity∫∞

0
δ(r− a)r dr = a

where the Dirac delta function is
zero everywhere other than the
perimeter of the circle where r = a.

22 Archimedes (circa 287-212 BCE)
determined geometric volumes
using the theory of infinitesimals
before the concept of the integral
was developed. The theory of
infinitesimals was further applied to
the calculation of areas and volumes
by Johannes Kepler (1571-1630) in his
1615 treatise New Solid Geometry of
Wine Barrels.

the circle only. This gives us a formula for the circumference of the circle:

C =
∫2π

0

∫∞

0
δ(r− a)r drdθ

Performing the integral over r first,21 followed by the integral over θ, we find∫2π

0

∫∞

0
δ(r− a)r drdθ =

∫2π

0
dθ ×

∫∞

0
δ(r− a)r dr

= 2π ×
∫∞

0
δ(r− a)r dr = 2πa

which is the circumference of a circle of radius a. Inserting the delta function
reduces the two-dimensional integral over the xy-plane to a one-dimensional
integral over the perimeter of the circle.

7.2.7 Triple integrals

The evaluation of the volume of a solid is of fundamental importance in
the physical sciences.22 In order to extend our understanding of multiple
integrals, let’s consider the evaluation of the volume of a cylinder of radius a
and height h (see Figure 7.16). Defining the volume of a cylinder in cartesian
coordinates is complicated. The limits of integration in x and y are coupled
just as we found in the integration over the unit circle. However, the integral
over the volume of a cylinder can be naturally and simply expressed in using
cylindrical coordinates.

Figure 7.16: A cylinder of radius a
and height h. Superimposed is the
volume element dV = rdrdθdz (bold)
with sides dr, rdθ, and dz. The range
of variables is defined by 0 ≤ r < ∞,
0 ≤ θ < 2π, and −∞ < z < ∞.

The triple integral representing the volume of the cylinder can be written

V =

∫ h

0

∫2π

0

∫ a

0
r drdθdz =

∫ h

0
dz×

∫2π

0
dθ ×

∫ a

0
r dr

= h× 2π × a2

2
= πa2h

which is the intuitive result that the volume of the cylinder is equal to the
circular area of the cylinder, πa2, times the height h.

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION




162 integrating functions of many variables

23 We used the identity∫π

0
sin(x)dx = − [cos x]π0 = −(−1− 1) = 2

to complete the integral over θ.

24 It is possible to extend the concept
of the double and triple integrals
to integrals over arbitrarily large
numbers of variables. As large, in
fact, as Avogadro’s number, and larger
still.

Now suppose we want to determine the volume of a sphere. We want to
select a coordinate system that shares the natural symmetry of a sphere. In
cartesian coordinates, the limits of integration over x, y, and z are coupled.
However, the spherical polar coordinate system depicted in Figure 1.22 has
the natural symmetry of a sphere. If we transform our function into spherical
polar coordinates we find the integral is separable in r, θ, and ϕ:

V =

∫2π

0

∫π

0

∫ a

0
r2 sin θ drdθdϕ =

∫2π

0
dϕ×

∫π

0
sin θdθ ×

∫ a

0
r2 dr

= 2π × 2× a3

3
=

4
3

πa3

This is the well-known result for the volume of a sphere of radius a.23

These examples show how integration in three-dimensions can be used
to derive important identities for volumes of shapes such as cylinders and
spheres. Moreover, the examples show how the proper choice of coordinate
system can convert a many dimensional integral into a series of independent
one-dimensional integrations. For the integrals of greatest interest to us in the
physical sciences, we will often find that multiple integrals can be simplified
in this way.24

7.2.8 Triple integrals and the delta function

Suppose we want to determine the surface area of a sphere of radius a.
We can accomplish this using the delta function. Let’s start with the triple
integral over all space in spherical polar coordinates∫2π

0

∫π

0

∫∞

0
f (r, θ, ϕ)r2 sin θ drdθdϕ

We insert into the integrand a function f (r, θ, ϕ) that is zero everywhere in
three-dimensional space other than on the surface of the sphere. We do that
using the delta function

f (r, θ, ϕ) = δ(r− a)

which is zero everywhere other than on the spherical surface defined by
r = a. As a result, we find the area of the surface of a sphere defined by the
separable integral

A =

∫2π

0

∫π

0

∫∞

0
δ(r− a)r2 sin θ drdθdϕ

=

∫2π

0
dϕ×

∫π

0
sin θ dθ ×

∫∞

0
δ(r− a)r2dr

Performing the integral over r first, followed by the integrals over θ and ϕ, we
find

A = a2 ×
∫2π

0
dϕ×

∫π

0
sin θ dθ = a2 × 2π × 2 = 4πa2

which is the area of the surface of a sphere of radius a. Inserting the delta
function reduces the three-dimensional integral over all space to a two-
dimensional integral over the surface of the sphere.
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25 We use the fact that

d
da

∫
f (ax) dx =

∫
d f
da

dx

A7 An alternative to integration by parts for exponential integrals

In exploring useful tricks for integrating functions of one variable, we per-
formed integrals over an exponential function eax times a power of x of the
form ∫

xeax dx

To evaluate this integral, we used integration by parts where

u = x dv = eax dx

du = dx v =
1
a

eax (7.24)

This led to the result∫
xeax dx =

1
a

xeax −
∫

1
a

eaxdx =
1
a

xeax − 1
a2 eax

=
1
a2 (ax− 1) eax + C

That was not too bad. However, consider the related integral∫
x4eax dx

To evaluate this integral using integration by parts, we need to apply the
rule of integration by parts four times! Let’s explore a way to improve our
efficiency in performing integrals of this kind.

Consider the identity

xeax =
d
da

eax

where we have used the derivative with respect to the constant a to pull
down a power of x. With this identity, we can rewrite the integral of interest
as25 ∫

xeax dx =
d
da

∫
eax dx

Using our knowledge of the exponential integral, this integral can be evalu-
ated as ∫

xeax dx =
d
da

∫
eax dx =

d
da

(
1
a

eax
)
= − 1

a2 eax +
1
a

xeax

=
1
a2 (ax− 1) eax + C (7.25)

just as we found using integration by parts.
The real power of this approach is evident in evaluating definite integrals

over an exponential function e−ax times a power of x. For example, we can
readily evaluate the integral of xe−ax:∫∞

0
xe−ax dx = − d

da

∫∞

0
e−ax dx = − d

da
1
a
=

1
a2
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164 evaluating the definite integral of a gaussian function

This result is consistent with the result derived with greater effort using
integration by parts, where

u = x dv = e−ax dx

du = dx v = −1
a

eax (7.26)

so that ∫∞

0
xe−ax dx = −1

a
xe−ax

∣∣∣
∞

0
−

∫∞

0

(
−1

a
e−ax

)
dx

=
1
a2 e−ax

∣∣∣
∞

0
=

1
a2

We see how our trick of differentiating with respect to a is more efficient
than integration by parts for these particular definite integrals over the range
0 ≤ x ≤ ∞. This is even more true for integrals such as∫∞

0
x2e−ax dx =

d2

da2

∫∞

0
e−ax dx =

d2

da2
1
a
= − d

da
1
a2 = 2

1
a3

This integral would require two rounds of integration by parts to be solved.
Using our trick, we can solve the problem by simply differentiating the
exponential twice with respect to a.

B7 Evaluating the definite integral of a gaussian function

Consider the integral over the gaussian function

I =
∫∞

−∞
e−ax2

dx

There is no obvious way to evaluate this integral using our standard methods,
such as algebraic substitution or integration by parts. Consider the algebraic
substitution y = x2. This leads to dy = 2xdx, introducing a factor of x. Similar
problems arise in integration by parts, where the derivative of the gaussian
function introduces a factor of x. To evaluate this integral, we will use an
inspired trick imagined by the German mathematician Carl Friedrich Gauss for
whom the gaussian function is now named.

Consider the product of two equivalent one-dimensional integrals∫∞

−∞
e−ax2

dx×
∫∞

−∞
e−ay2

dy = I × I = I2

This product can be thought of as one two-dimensional integral over the
xy-plane

I2 =

∫∞

−∞

∫∞

−∞
e−a(x2+y2)dxdy

This integral is most simply evaluated in plane polar coordinates, where

r2 = x2 + y2
∫∞

−∞

∫∞

−∞
dxdy→

∫∞

0

∫2π

0
r dθdr
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26 We can evaluate the integral

I =
∫∞

0
xe−ax2

dx

with the algebraic substitution
y = x2 so that dy = 2x dx and

I =
1
2

∫∞

0
e−ay dy =

1
2a

With this transformation of variables, we arrive at the expression

I2 =

∫∞

−∞

∫∞

−∞
e−a(x2+y2)dxdy =

∫∞

0

∫2π

0
e−ar2

r dθdr

= 2π

∫∞

0
e−ar2

r dr

Defining u = r2, so that du = 2r dr, results in

I2 = 2π

∫∞

0
e−ar2

r dr = π

∫∞

0
e−au du = π

[
−1

a
e−au

]∞

0
=

π

a

leading to our final result

I =
∫∞

−∞
e−ax2

dx =

√
π

a

This result is recorded in the Table of Definite Integrals in Supplement S5 #2.
We commonly encounter integrals over gaussian functions in the physical
sciences. As such, it is worthwhile to memorize this fundamental result.

C7 An alternative to integration by parts for gaussian integrals

We can extend our trick for efficiently integrating over integrands of the form
xn e−αx to integrands of the form xn e−αx2

containing a gaussian function.
Consider the gaussian integral∫∞

0
e−ax2

dx =
1
2

∫∞

−∞
e−ax2

dx =
1
2

√
π

a

Differentiating the gaussian function with respect to the parameter a pulls
down a factor of −x2. We find

d
da

∫∞

0
e−ax2

dx =

∫∞

0

d
da

e−ax2
dx = −

∫∞

0
x2e−ax2

dx

That means that∫∞

0
x2e−ax2

dx = − d
da

∫∞

0
e−ax2

dx = − d
da

(
1
2

√
π

a

)

=
1

4a3/2

√
π

For the odd powers of x, we can start from the integral identity26

∫∞

0
xe−ax2

dx =
1
2a

and use our trick to show∫∞

0
x3e−ax2

dx = − d
da

∫∞

0
xe−ax2

dx = − d
da

(
1
2a

)
=

1
2a2

While integrals of this form can be evaluated using integration by parts, the
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27 The German mathematician
Leopold Kronecker (1902-1984) made
important contribution to number
theory and logic.

−3 −2 −1 0 1 2 3

1

n−m

δnm

Figure 7.17: The Kronecker delta
function δnm as a function of the
difference between the indices n and
m.

effort required is significant. Using our trick, we can most efficiently evaluate
integrals over gaussian functions that commonly occur in the physical
sciences.

D7 Properties of delta functions

Delta functions can be used to select specific terms in a series or points in
a function. Here we explore the properties of two delta functions that are
commonly used in the physical sciences, the Kronecker delta function and the
Dirac delta function.

Kronecker delta function

The Kronecker delta function, δnm, is a function of two discrete indices n and m.
It is defined to be zero except when n = m:

δnm =

{
1 n = m

0 n 6= m

This function is used in sums to select those terms for which two indices are
equal (see Figure 7.17).27 For example, consider the sum

∞

∑
n=−∞

anδnm = am

where δnm is used to select only the elements an for which n = m. This is
known as the sifting property.

The Kronecker delta function is normalized as
∞

∑
n=−∞

∞

∑
m=−∞

δnm = 1

These examples demonstrate how the Kronecker delta function can be used to
sift through and select specific terms in a finite or infinite series.

Dirac delta function

The Dirac delta function, δ(x − x0), is zero everywhere except at the point
x = x0, where it is infinite:

δ(x− x0) =

{
∞ x = x0

0 x 6= x0

This function is used in integrals to select a particular value of the variable x
(see Figure 7.18). For example, consider the integral∫∞

−∞
f (x)δ(x− x0) = f (x0)

where δ(x− x0) is used to select the single value of the function f (x) for which
x = x0. This is the sifting property observed for the Kronecker delta function.
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The Dirac delta function is normalized as∫∞

−∞
δ(x− x0) = 1

and can be defined in terms of the first derivative of the Heaviside step func-
tion, θ(x− x0), which is 0 for x < x0 and unity for x ≥ x0 (see Figure 7.5).

x0 x0

1√
2πσ2

exp
(
− (x−x0)2

2σ2

)
Figure 7.18: The normalized gaus-
sian function centered at x0 with
decreasing values of σ ranging from
large (pale red line) to small (black
line). In the limit that σ → 0, the
function approaches the Dirac delta
function δ(x− x0).

There is a rich variety of ways to represent the Dirac delta function. In
problem solving in the physical sciences, one representation of the delta
function might lead to an easier solution than another representation. One
popular representation of the delta function is defined in terms of a nor-
malized gaussian function with its standard deviation σ approaching zero,
represented by the limit

δ(x− x0) = lim
σ→0

1√
2πσ2

e−
(x−x0)

2

2σ2 (7.27)

This function is continuous and differentiable with a maximum at x = x0. As
σ→ 0, the function’s height increases toward infinity, according to 1/σ, while
its width decreases to zero, according to σ, preserving the normalization∫∞

−∞

1√
2πσ2

e−
(x−x0)

2

2σ2 dx = 1

for all values of σ. This gaussian function is shown in Figure 7.18 for values
of the parameter σ ranging from 0.5 to 0.025.

These observations provide a guide to designing other representations of
the Dirac delta function. We need a function that is normalized with a single
parameter that controls the width and height of the function such that in
some limit the function becomes infinitely tall and infinitesimally wide.

Let’s consider the lorentzian function

δ(x− x0) =
1
π

lim
σ→0

σ

(x− x0)2 + σ2 (7.28)

Like the gaussian function, it is continuous and differentiable, with a height
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proportional to 1/σ and width proportional to σ so that the area normalized
for all values of σ (see Supplement S5#13). This lorentzian function is shown
in Figure 7.19 for values of the parameter σ ranging from 1 to 0.05.

x0

1
π

σ

(x − x0)2 + σ2
1

π(x − x0)
sin
(

x − x0
σ

)
1

2π
+

1
π

N

∑
n=1

cos [n (x − x0)]

Figure 7.19: Three functional forms
used to represent the Dirac delta
function.

Less obvious functional representations of the Dirac delta function make
use of sine or cosine terms. Consider the sinusoidal function

δ(x− x0) =
1
π

lim
σ→0

1
(x− x0)

sin
(

x− x0
σ

)
(7.29)

This function is normalized, since∫∞

−∞

1
(x− x0)

sin
(

x− x0
σ

)
dx = π

independent of the parameter σ (see the Table of Definite Integrals in Sup-
plement S5). This is surely one of the more remarkable definitions of the
mathematical constant π. The height of the function at x = x0 increases
according to 1/σ as σ decreases, and the width of the function decreases
in proportion to σ. This function is shown in Figure 7.19 for values of the
parameter σ ranging from 1 to 0.05.

The Dirac delta function can also be expressed as an infinite cosine series:

δ(x− x0) =
1

2π
+ lim

N→∞

1
π

N

∑
n=1

cos [n (x− x0)] (7.30)

Note that this formulation is independent of a parameter σ controlling the
height and width of the function. The increased height and decreased width
are realized through the constructive and destructive interference between
terms of the cosine series. This function is shown in Figure 7.19 for values of
the parameter N ranging from 1 to 40.

The Dirac delta function is useful in modeling a point charge, point
mass, or electron. These examples show a few of the many ways the Dirac
delta function can be represented in terms of continuous and differentiable
functions of one variable. Many other examples exist and some can be found
in Chapter 13, which explores Fourier transforms and harmonic analysis.
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E7 End-of-chapter problems

I consider that I understand an equation
when I can predict the properties of its
solutions, without actually solving it.

Paul Dirac

Warm-ups

7.1 Evaluate the following indefinite integrals. Consider italicized letters other than the integration variable to be
constants. Include the integration constant C in your result.

(a)
∫

mv dv (b)
∫

1
x3 dx (c)

∫
sin 3x dx

(d)
∫
(3x + 5)24x dx (e)

∫
e−ε/kBT dε (f)

∫
cos(2πνt) dt

(g)
∫

RT
p

dp (h)
∫

1
2

κx2 dx (i)
∫

q2

4πε0r2 dr

7.2 Evaluate the following integrals, using various methods of integration and the tables integrals found in Supple-
ments S5 and S6 as needed. Consider italicized letters other than the integration variable to be constants. Include the
integration constant C in your result.

(a)
∫

cos(5x) cos(3x) dx (b)
∫

x4 e−αx dx (c)
∫

sin2
(nπx

L

)
dx

(d)
∫

dx
(α− x)n (e)

∫
ye−y2/2σ2

dy (f)
∫

e−γx sin x dx

(g)
∫

dx
(4− x)(3− x)

(h)
∫

cos3 ϕ sin ϕ dϕ (i)
∫

x3 cos 2x dx

7.3 Evaluate the following definite integrals, using the tables of integrals found in Supplements S5 and S6 as needed.
Consider italicized letters other than the integration variable to be constants.

(a)
∫∞

−∞
x3e−αx2

dx (b)
∫ p2

p1

RT
p

dp (c)
∫V2

V1

(
nRT

V − nb
− n2a

V2

)
dV

(d)
∫ L

0
x2 sin2

(nπx
L

)
dx (e)

∫T2

T1

∆H
RT2 dT (f)

∫T2

T1

(
a + bT + cT2 +

d
T

)
dT

(g)
∫∞

0
e−2r/a0 r dr (h)

∫∞

0
e−mv2/2kT v3 dv (i)

∫∞

0
(2J + 1) e−a(J2+J) dJ

7.4 Evaluate the following multiple integrals, using the tables of integrals found in Supplements S5 and S6 as
needed. For indefinite integrals be sure to include an integration constant.

(a)
∫ ∫

yx2 dx dy (b)
∫ ∫

(x2 + y2) dx dy
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(c)
∫ ∫

y ln x dy dx (d)
∫ ∫ ∫

x2 ln y e2x dx dy dz

(e)
∫π/2

0

∫2

0
r cos θ dr dθ (f)

∫2π

0

∫π

0

∫V

0
v2 sin θ dv dθ dϕ

(g)
∫∞

0

∫∞

0

(
x2 + y2

)
e−

1
2 (x2+y2) dx dy (h)

∫∞

−∞

∫∞

−∞

∫∞

−∞
e−

1
2kB T (mv2

x+mv2
y+mv2

z) dvx dvy dvz

Homework exercises

7.5 Evaluate the following integral, which commonly appears in quantum mechanics and statistical thermodynam-
ics

I =
∫π

0
(3 cos2 θ − 1)2 sin θ dθ

7.6 The allowed energies of a quantum mechanical particle in a one-dimensional box of length L can be written

En = − h̄2

2m
2
L

∫ L

0
sin
(nπx

L

) [ d2

dx2 sin
(nπx

L

)]
dx

where n = 1, 2, 3, · · · and h̄ = h/2π is the constant h bar. Complete the integral to show that

En =
n2h2

8mL2

7.7 Consider the integral ∫ ∫ ∫
z2 dx dy dz

taken over the volume of a sphere of radius a. Using spherical polar coordinates where z = r cos θ the integral takes
the form ∫ a

0

∫π

0

∫2π

0
(r cos θ)2 r2 sin θ dϕ dθ dr

Evaluate this integral.

7.8 Consider the integral over all space ∫∞

0

∫π

0

∫2π

0
e−2r cos2 θ r2 sin θ dϕ dθ dr

Evaluate this integral.

7.9 Consider the integral ∫ ∫ ∫
xyz dx dy dz

taken over the volume defined by 0 ≤ z < a and x2 + y2 ≤ b2 where x ≥ 0 and y ≥ 0. This integral can be expressed
in cylindrical coordinates as ∫ a

0

∫ π
2

0

∫ b

0
(r2 cos θ sin θ) z r dr dθ dz

Evaluate this integral.

7.10 Consider a gas of atoms interacting with a pairwise square well potential energy function dependent on the
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distance r between a pair of atoms

V(r) =





∞ 0 < r ≤ σ

−ε σ < r ≤ λσ

0 r > λσ

where λ > 1 controls the width of the well of depth ε. The potential function is shown below (red line) and com-
pared with the smooth Lennard-Jones potential energy function (blue line) examined in Chapter 5 (see Figure 5.12).
The compressibility factor of the gas can be written as a Taylor’s series expansion in powers of the number of density
n/V as

Z =
PV

nRT
= 1 + B(T)

n
V

+ C(T)
( n

V

)2
+ higher order terms

This is known as the virial expansion where the coefficients B(T) and C(T) are the second and third virial coefficients,
respectively.

r

V(r)

0

σ

−ε

The second virial coefficient is defined as

B(T) = −1
2

∫∞

0

∫π

0

∫2π

0

(
e−βV(r) − 1

)
r2 sin θ dϕ dθ dr

where β = 1/kBT.

(a) Plot the potential energy V(r) as a function of r over the range 0 < r < 2λσ taking λ = 2.

(b) Show that B(T) can be written

B(T) = −2π

∫∞

0

(
e−βV(r) − 1

)
r2 dr

(c) Evaluate the integral in (b) to show that

B(T) =
2πσ3

3

[
1− (λ3 − 1)(eβε − 1)

]

(d) Take the limit of your result as λ→ 1 and provide a physical interpretation of that limit.
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7.11 Prove that

In =

∫∞

0
rne−βr dr =

n!
βn+1

This result is recorded in the Table of Definite Integrals in Supplement S5 #1.

7.12 Starting from the result that

I0 =

∫∞

0
e−αx2

dx =
1
2

√
π

α

show that

I2n =

∫∞

0
x2n e−αx2

dx =
(2n− 1)!!

2n+1αn

√
π

α

where the double factorial is defined
(2n− 1)!! = (2n− 1)(2n− 3) . . . 3 · 1

This result is recorded in the Table of Definite Integrals in Supplement S5 #4.

7.13 Starting from the result that

I1 =

∫∞

0
x e−αx2

dx =
1

2α

show that

I2n+1 =

∫∞

0
x2n+1 e−αx2

dx =
n!

2αn+1

This result is recorded in the Table of Definite Integrals in Supplement S5 #7.

7.14∗ The Dirac delta function is defined as

δ(x− x0) =

{
0 x 6= x0
∞ x = x0

such that ∫∞

−∞
δ(x− x0) dx = 1

and ∫∞

−∞
δ(x− x0) f (x) dx = f (x0)

Evaluate the following integrals involving the Dirac delta function.

(a) I =
∫2π

0
δ(θ − π) cos θ dθ (b) I =

∫∞

0
δ(t− 1)e−t dt (c) I =

∫∞

0

∫2π

0
δ(r− a) r dθdr

(d) I =
∫2L

−2L

∫2L

−2L
δ(x− L) dx dy (e) I =

∫2L

−2L

∫2L

−2L

∫2L

−2L
δ(y + L) dx dy dz (f) I =

∫∞

−∞
δ(x− 1)(x2 − 1)2 dx

7.15∗ In Chapter 1, we considered the transformation of a volume element from one coordinate system to another.
For example, using geometric arguments we found the volume element in two-dimensional cartesian coordinates,
dA = dxdy in Figure 1.14, is transformed to dA = r drdθ in two-dimensional plane polar coordinates (see Fig-
ure 1.18). This exercise explores a systematic approach for transforming a volume element between coordinate
systems that draws on our knowledge of partial derivatives and the determinant.

Suppose we start from the volume element dA = dxdy in two-dimensional cartesian coordinates. That volume
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element can be transformed to plane polar coordinates using the formula

dxdy = |J| drdθ

where |J| is the determinant of the jacobian matrix defined

J =




∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ


 =

∂(x, y)
∂(r, θ)

The mapping between (x, y) and (r, θ) is defined by

x = r cos θ y = r sin θ

so that the determinant of the jacobian matrix is

|J| =
∣∣∣∣∣

cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r

resulting in
dxdy = |J| drdθ = r drdθ

So you see how it works.

(a) Write the jacobian matrix for the transformation from three-dimensional cartesian coordinates (x, y, z) to spheri-
cal polar coordinates (r, θ, ϕ) defined by

dxdydz = |J| drdθdϕ =

∣∣∣∣
∂(x, y, z)
∂(r, θ, ϕ)

∣∣∣∣ drdθdϕ

Evaluate the determinant of the jacobian matrix to show that the volume element dV = r2 sin θ drdθdϕ.

(b) Write the jacobian matrix for the transformation from three-dimensional cartesian coordinates (x, y, z) to cylindri-
cal coordinates (r, θ, z) defined by

dxdydz = |J| drdθdz =

∣∣∣∣
∂(x, y, z)
∂(r, θ, z)

∣∣∣∣ drdθdz

Evaluate the determinant of the jacobian matrix to show that the volume element dV = r drdθdz.
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