
1 Since y1(x) = c1 eαx and y2(x) =
c2 e−αx are each solutions to the
linear second order differential
equation, Equation 11.1, it follows
that the linear superposition y(x) =
y1(x) + y2(x) is also a solution.
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11.1 Second order ordinary differential equations

Second order differential equations are central to the modeling of physical systems. While first order
ordinary differential equations model processes with exponentially growing or diminishing observables, second
order ordinary differential equations can be used to model a variety of phenomena including oscillatory motion.
This section explores the general form of second order ordinary differential equations and diverse nature of the
solutions.

11.1.1 General features of second order ordinary differential equations

In Chapter 10 we considered the first order ordinary differential equation

d
dx

y(x) = ay(x)

We found the solution y(x) must be a function of the form y(x) = c1 eax

where c1 is a constant, since the first derivative of the exponential function is
proportional to the function itself. Similarly, the equation

d
dx

y(x) = −ay(x)

will have a solution of the form y(x) = c1 e−ax. In each case, the constant
coefficient c1 is determined by a boundary condition.

Let’s apply the same approach to the solution of the second order ordinary
differential equation

d2

dx2 y(x) = a2y(x) (11.1)

where a > 0 and real. In this case, we seek a function y(x) with second
derivative proportional to a positive constant times the function itself. The
exponential functions c1 eax and c2 e−ax with real arguments possess that
essential property, yielding the solution

y(x) = c1 eax + c2 e−ax

where c1 and c2 are constant coefficients.1
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2 We could equivalently propose
solutions of the from c1

′ cos(ax) and
c2
′ sin(ax).

3 A trivial solution is a formal solu-
tion to the problem from which we
learn nothing.

Now consider the equation

d2

dx2 y(x) = −a2 y(x) (11.2)

We seek a function y(x) with a second derivative equal to a negative constant
times the function itself. The exponential functions c1 eiax and c2 e−iax with
imaginary arguments have that property.2 As such, we can write the solution
y(x) = c1 eiax + c2 e−iax where the coefficients c1 and c2 are determined by the
boundary conditions.

Now consider the homogeneous linear second order ordinary differential
equation

d2

dx2 y(x) + b
d

dx
y(x) + c y(x) = 0 (11.3)

with constant coefficients b and c. We propose the ansatz

y(x) = eαx

where α is a complex number. Inserting this form for y(x), we find

d2

dx2 eαx + b
d

dx
eαx + c eαx = α2eαx + b αeαx + c eαx = 0

Ignoring the trivial solution eαx = 0, we arrive at the result3

α2 + bα + c = 0 (11.4)

This is known as the auxiliary equation. This quadratic equation in the variable
α has two roots, α±, defined by the quadratic formula

α± =
−b±

√
b2 − 4c

2

Returning to our ansatz, we observe that both c1eα+x and c2eα−x are solutions
to Equation 11.3, where c1 and c2 are constant coefficients. As such, we write
the general solution to Equation 11.3 as

y(x) = c1 eα+x + c2 eα−x (11.5)

where the constant coefficients c1 and c2 are determined by the boundary
conditions typically defined in terms of the value of the function, y(0), and its
derivative, y′(0).

11.1.2 Qualitative theory of second order ordinary differential equations

Our observations above can be summarized as follows. For the second order
differential equation

d2

dx2 y(x) + b
d

dx
y(x) + c y(x) = 0

there is a general solution of the form

y(x) = c1 eα+x + c2 eα−x
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where the constants α± are the roots of the auxiliary equation

α2 + bα + c = 0

defined by the quadratic formula

α± =
−b±

√
b2 − 4c

2

The nature of the solution y(x) is determined by the roots α±, which may
be real, imaginary, complex, or degenerate (double) roots, depending on
the particular values of the parameters b and c. Figure 11.1 shows the bc-
parameter space divided into the four regimes.

b

c

b2 = 4c
double

imaginary
sinusoidal

O

complex complex

oscillatory oscillatory
damped forced

real(+,+)
exponential

increase

real(−,−)
exponential

decrease

real(+,−)
hyperbolic

real(−,+)
hyperbolic

Figure 11.1: The nature of roots of
the auxiliary equation as a function
of the parameters b and c. Double
roots are found on the parabola
defined by b2 = 4c (thick green).
Complex roots are found atop the
parabolic curve for c > b2/4. Purely
imaginary roots occupy a surface
normal to the bc-plane (thick blue).
In this projection, imaginary roots
are restricted to the positive c-axis.
Below the parabolic curve the roots
are real, forming exponential or
hyperbolic functions.

When b2 > 4c, the roots α± are real. The solution y(x) is exponentially
increasing or decreasing with increasing x. Real roots support solutions
involving exponentially decaying or growing functions of the kind found in
physical kinetics, capturing the behavior of populations or concentrations that
grow or diminish exponentially in time.

When b = 0, the roots α± are imaginary. The solution y(x) is a purely oscil-
latory function of x. Imaginary roots support solutions involving oscillatory
functions of the kind used to model a vibrating mass on a spring and waves
found in the study of quantum theory.

When b2 < 4c, the roots α± are complex. The solution y(x) oscillates
with an amplitude that exponentially increases or decreases with increasing
x. Complex roots capture damped oscillatory motion as found an oscilla-
tor feeling the effects of friction that gradually attenuate the amplitude of
motion. Solutions with complex roots are also used to model propagating
electromagnetic waves.
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264 second order ordinary differential equations

When b2 = 4c, we find the special case of double roots where α+ = α− =

−b/2. Double roots are a special coincidence in the values of the b and c
parameters that we do not expect to find in nature. Examples of the various
kinds of qualitative behavior resulting from Equation 11.3 are presented
below in Figure 11.2.

x

y(x)

real

x

y(x)

imaginary

x

y(x)

complex

x

y(x)

double

Figure 11.2: The nature of the roots
of the auxiliary equation, Equa-
tion 11.4, determine the character
of the solution to Equation 11.3.
Examples of solutions with real
roots (upper left), imaginary roots
(upper right), complex roots (lower
left), and double roots (lower right).

In summary, our analysis demonstrates that Equation 11.3 can be used to
model a wide variety of physical phenomena.

d2

dx2 y(x) + b
d

dx
y(x) + c y(x) = 0

The particular choice of parameters b and c lead to roots

α± =
−b±

√
b2 − 4c

2

that determine the nature of the solution

y(x) = c1 eα+x + c2 eα−x

In the next section, we explore the solution of the homogeneous linear second
order ordinary differential equation, Equation 11.3, for a variety of examples
relevant to modeling processes in the physical sciences.
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x

cosh(x) sinh(x)

Figure 11.3: The hyperbolic func-
tions sinh(x) = (ex − e−x)/2 (black
line) and cosh(x) = (ex + e−x)/2
(red line).

11.2 Applications of second order differential equations

Second order differential equations with constant coefficients yield solutions exhibiting a wide range of
behavior, including exponential growth or decay, sinusoidal oscillation, and exponentially attenuated oscillation.
This section explores applications exhibiting the variety of behavior found in solutions of second order ordinary
differential equations.

11.2.1 Survey of second order ordinary differential equations

In this section, we explore specific examples of differential equations repre-
senting domains with real roots, imaginary roots, complex roots, and double
roots. In doing so, we will appreciate how this variety of solutions can be
used to model a remarkable diversity of physical systems.

Case #1: real roots

When the coefficients b and c are such that b2 > 4c, the roots

α± =
−b±

√
b2 − 4c

2

are real. For the case c = 0, there will be one zero root and one non-zero root
equal to −b, leading to a solution of the form

y(x) = c1 + c2 e−bx

For the more general case of c 6= 0 and b2 > 4c, the roots of the auxiliary
equation α± are real and the solution y(x) will have exponentially divergent
behavior as a function of x.

When the coefficients c1 and c2 are of the same sign, the solution y(x) has
the character of a hyperbolic cosine (see Figure 11.3, red line). In contrast, when
the coefficients c1 and c2 are of opposite sign, the general solution has the
character of a hyperbolic sine (see Figure 11.3, black line). In each case, the
solution y(x) diverges with increasing x. Exponential growth of this kind is
observed in population growth as observed in Chapter 10.

Let’s explore the solution of the second order ordinary differential equa-
tion

d2

dx2 y(x) +
d

dx
y(x)− 2 y(x) = 0 (11.6)

with the boundary conditions y(0) = 3 and y′(0) = 0. We take the ansatz

y(x) = eαx

and insert it into Equation 11.6 with the result

d2

dx2 eαx +
d

dx
eαx − 2 eαx = α2 eαx + α eαx − 2 eαx = 0

leading to the auxiliary equation

α2 + α− 2 = (α− 1)(α + 2) = 0
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x

2ex

e−2x

y(x) = 2ex + e−2x

0

3
2
1

Figure 11.4: The function y(x) =
2 exp(x) + exp(−2x) (black) as a
function of x. Shown for comparison
are the two contributions forming
the superposition y(x), each of
which is a solution to Equation 11.6.

This quadratic equation has real roots

α± =

{
1

−2

leading to the general solution defined by Equation 11.5 as

y(x) = c1 ex + c2 e−2x

The coefficients c1 and c2 are determined by applying the boundary conditions

y(0) = c1 + c2 = 3

and
dy
dx

∣∣∣
x=0

=
[
c1 ex − 2c2 e−2x

]
x=0

= c1 − 2c2 = 0

We find c1 = 3− c2 and c1 = 2c2 so that c1 = 2 and c2 = 1. The final solution to
Equation 11.6 is

y(x) = 2 ex + e−2x (11.7)

This result is plotted in Figure 11.4. Note that we can validate our solution,
Equation 11.7, by inserting it into the original differential equation, Equa-
tion 11.6, and proving the equality.

Case #2: imaginary roots

When the coefficients b and c are such that b2 < 4c and b = 0, the roots

α± = ±i
√

c

are purely imaginary, leading to solutions of the form

y(x) = c1 ei
√

cx + c2 e−i
√

cx (11.8)

This solution appears to have real and imaginary parts. However, we expect
the solution to be purely real. We will find the boundary conditions result in
coefficients c1 and c2 that make the solution y(x) purely real.

Recall that Euler’s formula provides a connection between exponentials of
imaginary arguments and the cosine and sine functions:

eix = cos(x) + i sin(x)

Using this identity, we can reformulate Equation 11.8 as

y(x) = c1
′ cos(

√
cx) + c2

′ sin(
√

cx)

where c1
′ = c1 + c2 and c2

′ = i(c1 − c2). When the roots of the auxiliary equation
are imaginary and the coefficients c1 and c2 are real, the resulting solution
y(x) is a real sinusoidal function of x.

Let’s apply this method to solve the second order ordinary differential
equation

d2

dx2 y(x) + 9 y(x) = 0 (11.9)
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x

1

y(x) = cos(3x) + 2 sin(3x)

0

Figure 11.5: The solution to Equa-
tion 11.9 is the sinusoidal function
y(x) = 2 cos(3x) + sin(3x) charac-
terized by imaginary roots of the
auxiliary equation and satisfying the
boundary conditions y(0) = 1 and
y′(0) = 6.

with the boundary conditions y(0) = 1 and y′(0) = 6. We take the ansatz

y(x) = eαx

and insert it into Equation 11.9 as

d2

dx2 eαx + 9 eαx = α2 eαx + 9 eαx = 0

leading to the auxiliary equation

α2 + 9 = (α− 3i)(α + 3i) = 0

This quadratic equation has imaginary roots

α± =

{
3i

−3i

leading to the general solution defined by Equation 11.5:

y(x) = c1
′ cos(3x) + c2

′ sin(3x)

The coefficients c1
′ and c2

′ can be determined by applying the boundary
conditions

y(0) = c1
′ = 1

and
dy
dx

∣∣∣
x=0

= [−3c1
′ sin(3x) + 3c2

′ cos(3x)]x=0 = 3c2
′ = 6

We find c1
′ = 1 and c2

′ = 2. The final solution to Equation 11.9 is

y(x) = cos(3x) + 2 sin(3x) (11.10)

This result is plotted in Figure 11.5. Note that we can validate our solution,
Equation 11.10, by inserting it into the original differential equation, Equa-
tion 11.9, and proving the equality.

Case #3: complex roots

When the coefficients b and c are such that b2 < 4c, the radical
√

b2 − 4c is
imaginary. When b 6= 0, the roots

α± =
−b±

√
b2 − 4c

2
=
−b±

√
c′

2

are complex with real and imaginary parts. As a result, solutions are of the
form

y(x) = c1 exp
[
−1

2

(
b− i
√

c′
)

x
]
+ c2 exp

[
−1

2

(
b + i
√

c′
)

x
]

where c′ = b2 − 4c. Pulling out the common exponential factor e−bx/2 leads to

y(x) = e−bx/2
(

c1 ei
√

c′x/2 + c2 e−i
√

c′x/2
)
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4 Note that α+ and α− are complex
conjugates so that α+ = α−

∗.

Using Euler’s formula, we can convert the sum of exponentials with
imaginary arguments to sinusoidal functions with the result

y(x) = e−bx/2
[
c1
′ cos

(√
c′x/2

)
+ c2

′ sin
(√

c′x/2
)]

where again c1
′ = c1 + c2 and c2

′ = i(c1− c2). The solutions y(x) are exponentially
decreasing (when b > 0) or increasing (when b < 0) sinusoidal functions.

Let’s apply this method to solve the second order ordinary differential
equation

d2

dx2 y(x) + 2
d

dx
y(x) + 10 y(x) = 0 (11.11)

with the boundary conditions y(0) = 1 and y′(0) = 0. We take the ansatz

y(x) = eαx

and insert it into Equation 11.11 as

d2

dx2 eαx + 2
d

dx
eαx + 10 eαx = α2 eαx + 2 αeαx + 10 eαx = 0

leading to the auxiliary equation

α2 + 2α + 10 = 0

This quadratic equation has complex roots4

α± =

{
−1 + 3i

−1− 3i

leading to the general solution defined by Equation 11.5 as

y(x) = e−x
(

c1 e3ix + c2 e−3ix
)

and more conveniently written as

y(x) = e−x [c1
′ cos(3x) + c2

′ sin(3x)]

The coefficients c1
′ and c2

′ can be determined by applying the boundary
conditions

y(0) = c1
′ = 1

and

dy
dx

∣∣∣
x=0

=
[
− e−x [c1

′ cos(3x) + c2
′ sin(3x)]

+ e−x [−3c1
′ sin(3x) + 3c2

′ cos(3x)]
]

x=0

= − c1
′ + 3c2

′ = 0

We find c1
′ = 1 and c2

′ = 1
3 . The final solution to Equation 11.11 is

y(x) = e−x
[

cos(3x) +
1
3

sin(3x)
]

(11.12)
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x

1

y(x)=e−x
[
cos(3x)+ 1

3 sin(3x)
]

y(x) = 1
600 ex sin(3x)

0

Figure 11.6: The solutions to Equa-
tions 11.11 and 11.13 are charac-
terized by complex roots of the
auxiliary equation resulting in
sinusoidal functions with ampli-
tudes that diminish (black line) or
grow (red line) exponentially with
increasing x.

This result is plotted in Figure 11.6 (black line). The solution exhibits oscilla-
tions that exponentially decay with increasing x. Note that we can validate
our solution, Equation 11.12, by inserting it into the original differential
equation, Equation 11.11, and proving the equality.

Now consider the second order ordinary differential equation

d2

dx2 y(x)− 2
d

dx
y(x) + 10 y(x) = 0 (11.13)

where we have changed the coefficient of the middle term from b = 2 in
Equation 11.11 to b = −2. The roots of the auxiliary equation become

α± =

{
1 + 3i

1− 3i

leading to the general solution

y(x) = ex [c1
′ cos(3x) + c2

′ sin(3x)]

The decaying exponential in Equation 11.12 has been replaced with a growing
exponential. Applying the boundary conditions y(0) = 0 and y′(0) = 1/200,
the final result is

y(x) =
1

600
ex sin(3x)

as shown in Figure 11.6 (red line). The solution exhibits oscillations that
exponentially grow in amplitude with increasing x.

Case #4: double roots

When the coefficients b and c are such that b2 = 4c, the radical
√

b2 − 4c is
zero and the two roots of the auxiliary equation are degenerate:

α± = α = − b
2

This case is known as double roots. In the case of double roots, the solution
takes the special form

y(x) = c1 eαx + c2 xeαx

Due to the degeneracy in the roots, each exponential varies at the same rate.
Let’s prove this is true for the second order ordinary differential equation

d2

dx2 y(x) + 2
d

dx
y(x) + y(x) = 0 (11.14)

with boundary conditions y(0) = 1 and y′(0) = −3. The solution to the
corresponding auxiliary equation

α2 + 2α + 1 = (α + 1)(α + 1) = 0

is the double root α = −1 leading to the special solution

y(x) = c1 e−x + c2 xe−x
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x

y(x)

e−x

−2xe−x

y(x) = e−x−2xe−x

0

1

Figure 11.7: The solution for double
roots y(x) = exp(−x)− 2x exp(−x)
(black) as a function of x. Shown for
comparison are the two contribu-
tions forming y(x) each of which is
a solution to Equation 11.14.

Applying the boundary conditions

y(0) = c1 = 1

and
dy
dx

∣∣∣
x=0

=
[
−c1 e−x + c2

(
e−x − xe−x)]

x=0 = −c1 + c2 = −3

we find that c1 = 1 and c2 = −2. The final result is

y(x) = e−x − 2 xe−x (11.15)

as is shown in Figure 11.7. Checking our solution, we use y′(x) = −3e−x +

2xe−x and y′′(x) = 5e−x − 2xe−x. Inserting these relations into our original
Equation 11.14 yields

d2

dx2 y(x) + 2
d

dx
y(x) + y(x) =

(
5e−x − 2 xe−x)+ 2

(
−3e−x + 2 xe−x)

+
(
e−x − 2 xe−x) = 0

validating our solution.
When we model a system using Equation 11.3 written

d2

dx2 y(x) + b
d

dx
y(x) + c y(x) = 0

We expect the coefficients b and c to be real numbers defined by fundamental
physical constants. The coincidence of having an auxiliary equation with the
exact equality b2 = 4c is unlikely. As such, we do not expect to encounter
double roots when when solving accurately parameterized models of physi-
cal systems.

In this section, we have developed a general method for the solution of
linear second order ordinary differential equations with constant coefficients
b and c, as in Equation 11.3. In the section that follows, we explore a more
general class of second order ordinary differential equations, which will be
applicable to cases where the coefficients b(x) and c(x) are functions of x.
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5 While it is possible to form or-
dinary differential equations of
arbitrary order, in the study of ther-
modynamics, quantum theory, and
kinetics, we typically encounter first
and second order equations.

11.3 Power series solutions to differential equations

Many first and second order ordinary differential equations yield solutions represented by common
functions such as the exponential, sine and cosine, and hyperbolic sine and cosine. Our approach has been to
make an educated guess, or ansatz, plug that in, and find a set of parameters representing a solution. However, it is
possible to employ a more general approach to the solution of ordinary differential equations in which our ansatz
is a power series representing continuous and differentiable functions normally encountered in modeling physical
systems. In this section, we will explore this general and powerful approach to the solution of first and second order
ordinary differential equations.

11.3.1 Solving ordinary differential equations using power series

Let’s review our current ability to solve first and second order ordinary
differential equations. We developed a general solution for homogeneous
and non-homogeneous linear first order ordinary differential equations of the
form

d
dx

y(x) + q(x)y(x) = r(x)

and homogeneous linear second order ordinary differential equations with
constant coefficients5

d2

dx2 y(x) + b
d

dx
y(x) + c y(x) = 0

However, we have no general solution for non-homogeneous linear second
order ordinary differential equations of the form

d2

dx2 y(x) + b(x)
d

dx
y(x) + c(x) y(x) + d(x) = 0

We also have no general solution for homogeneous linear second order
ordinary differential equations where d(x) = 0 but the coefficients b(x) and
c(x) depend on x.

How can we solve this more general differential equation when we cannot
anticipate the specific form of our solution? We recall that most functions
used to model physical properties can be expressed as a power series

y(x) =
∞

∑
n=0

anxn

Depending on the specific set of coefficients {an}, the function y(x) may
be an exponential, sinusoid, damped sinusoid, polynomial, logarithm, or
a variety of other functions. With this insight, we propose the power series
as our ansatz, representing a general continuous and differentiable function.
Inserting our proposed solution into the differential equation of interest, we
solve for the coefficients {an} defining our solution. Let’s see how this works
by solving two familiar ordinary differential equations using the power series
method.
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6 Equivalently, you can introduce a
new index n′ = n− 1, substituting
n→ n′ + 1. You can then rewrite the
new index n′ as n before combining
the sums. Try both approaches and
see what works best for you.

11.3.2 Power series solutions for first order differential equations

Let’s apply this approach to solve the familiar first order ordinary differential
equation

d
dx

y(x) + y(x) = 0 (11.16)

with the boundary condition y(0) = 2. As our ansatz, we propose the power
series

y(x) =
∞

∑
n=0

anxn (11.17)

Inserting this proposed solution in Equation 11.16, we must evaluate the first
derivative of y(x) with respect to x as

d
dx

y(x) =
d

dx

∞

∑
n=0

anxn =
∞

∑
n=0

an

(
d

dx
xn
)
=

∞

∑
n=0

annxn−1

Using this result in Equation 11.16, we find

d
dx

y(x) + y(x) =
∞

∑
n=0

annxn−1 +
∞

∑
n=0

anxn = 0

To simplify this result, we must add the two power series together. To do that,
we must form each series over the same range of n, with terms of a given n
having the same power of x.

We are left to combine the two series. In the first series, the coefficient is
proportional to n so that the n = 0 term is always zero. Removing the n = 0
term from the first series results in

∞

∑
n=0

annxn−1 →
∞

∑
n=1

annxn−1 = a1 + 2a2x + 3a3x2 + . . .

where we have increased the lower end of the index n from 0 to 1. We are left
to add the two series

∞

∑
n=1

annxn−1 +
∞

∑
n=0

anxn = 0

This first power series starts from n = 1, but we would like this series to start
from n = 0. To accomplish this, we shift the index n→ n + 1 with the result

∞

∑
n=1

annxn−1 →
∞

∑
n=0

an+1(n + 1)xn = a1 + 2a2x + 3a3x2 + . . .

Properly shifting the index in a power series can be tricky, but we will learn
to do this with practice.6

Returning to our initial Equation 11.16, we insert our final form for the
derivative of y(x). We find

d
dx

y(x) + y(x) =
∞

∑
n=0

an+1(n + 1)xn +
∞

∑
n=0

anxn

=
∞

∑
n=0

[an+1(n + 1) + an] xn = 0 (11.18)
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7 The negative sign in the recursion
relation signals the fact that the
coefficients lead to an alternating
series.

For Equation 11.18 to be true for all x, it must be that

an+1(n + 1) + an = 0

for all values of n.This leads to the recursion relation. It tells us that

an+1 = − an

(n + 1)
n = 0, 1, 2, . . .

and can be used to recursively generate our coefficients (see Figure 11.8).7

−1

1

1 2 3 4 5 6 7 n

an

0

Figure 11.8: The power series
coefficients an = (−1)na0/n! (red
dots) for a0 = 1.

We take our first coefficient to be a0, a value we will determine later using
our boundary conditions. We can generate the coefficient a1 as

a1 = − a0
0 + 1

= −a0

where the negative sign in the recursion relation tells us that our solution for
y(x) will be an alternating series. We can continue to generate coefficients
through recursion, including

a2 = − a1
1 + 1

= −1
2

a1 = −1
2
(−a0) =

1
2

a0

and

a3 = − a2
2 + 1

= −1
3

a2 = −1
3

(
1
2

a0

)
= − 1

3 · 2 a0

and so on. In general, we recognize that

an = (−1)n 1
n!

a0 n = 0, 1, 2, . . .

Inserting this result for our coefficients in our original power series from
Equation 11.17, we find

y(x) =
∞

∑
n=0

anxn =
∞

∑
n=0

(−1)n 1
n!

a0xn = a0

∞

∑
n=0

(−1)n 1
n!

xn
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We recognize this result as the power series of an exponential

e−x =
∞

∑
n=0

(−1)n 1
n!

xn

so that
y(x) = a0e−x

Applying our initial condition that y(0) = 2, we find y(0) = a0 = 2, leading to
our final solution to Equation 11.16

y(x) = 2e−x

Our solution can be validated by inserting our result for y(x) into Equa-
tion 11.16 and proving the equality

d
dx

y(x) + y(x) =
d

dx
2e−x + 2e−x = −2e−x + 2e−x = 0

11.3.3 Power series solutions for second order differential equations

Consider the second order ordinary differential equation

d2

dx2 y(x) + y(x) = 0 (11.19)

with the initial conditions y(0) = 3 and y′(0) = 1. As our ansatz, we propose

y(x) =
∞

∑
n=0

anxn (11.20)

Inserting this proposed solution in Equation 11.19, we must evaluate the
second derivative of y(x) with respect to x as

d2

dx2 y(x) =
d2

dx2

∞

∑
n=0

anxn =
∞

∑
n=0

an

(
d2

dx2 xn
)
=

∞

∑
n=0

ann(n− 1)xn−2

Inserting this result in Equation 11.19, we find

d2

dx2 y(x) + y(x) =
∞

∑
n=0

ann(n− 1)xn−2 +
∞

∑
n=0

anxn = 0

We are left to combine the two series. In the first series, the coefficient is
proportional to n(n− 1) so that the n = 0 and n = 1 terms are always zero.
Removing the n = 0 and n = 1 terms from the first series results in

∞

∑
n=0

ann(n− 1)xn−2 →
∞

∑
n=2

ann(n− 1)xn−2

This leaves us with
∞

∑
n=2

ann(n− 1)xn−2 +
∞

∑
n=0

anxn = 0

The first power series starts from n = 2, but we would like this series to start
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8 Equivalently, you can introduce a
new index n′ = n− 2, substituting
n→ n′ + 2. You can then rewrite the
new index n′ as n before combining
the sums.

9 Again, the negative sign in the
recursion relation signals the fact
that the coefficients lead to an
alternating series.

10 Note that the sum
∞

∑
n=0

x2n

contains only even powers of x.

from n = 0 as we must eventually combine the first series with the second
series that starts from n = 0. To accomplish this, we shift the index n→ n + 2
by substituting n→ n + 2, n− 1→ n + 1, and n− 2→ n, with the result8

∞

∑
n=2

ann(n− 1)xn−2 →
∞

∑
n=0

an+2(n + 2)(n + 1)xn

Returning to our initial equation, we find

d2

dx2 y(x) + y(x) =
∞

∑
n=0

an+2(n + 2)(n + 1)xn +
∞

∑
n=0

anxn

=
∞

∑
n=0

[an+2(n + 2)(n + 1) + an] xn = 0

This leads to the condition

an+2(n + 2)(n + 1) + an = 0

and the recursion relation

an+2 = − 1
(n + 2)(n + 1)

an n = 0, 1, 2, . . .

which we will use to generate the set of power series coefficients (see Fig-
ure 11.9).9 The coefficients a0 and a1 will be determined through our bound-
ary conditions. All other coefficients will be determined in terms of a0 and a1
through the recursion relation.

The coefficients with even indices are

a0 a2 = − a0
2 · 1 a4 = − a2

4 · 3 =
a0
4!

a6 = − a4
6 · 5 = − a0

6!

and so on. As such, we find

a2n = (−1)n 1
(2n)!

a0 n = 0, 1, 2, . . . (11.21)

The coefficients with odd indices are

a1 a3 = − a1
3 · 2 a5 = − a3

5 · 4 =
a1
5!

a7 = − a5
7 · 6 = − a1

7!

and so on, such that

a2n+1 = (−1)n 1
(2n + 1)!

a1 n = 0, 1, 2, . . . (11.22)

As we have identified the coefficients, we can form a series solution for y(x).
We will form two series, one for even powers of x and one for odd powers

of x, and combine those results. Inserting Equation 11.21 for even powers of x
in our original power series Equation 11.20 results in10

a0

∞

∑
n=0

(−1)n 1
(2n)!

x2n

Similarly, inserting Equation 11.22 for odd powers of x into our original
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−1

1

1 2 3 4 5 6 7 n

an

0

Figure 11.9: The power series
coefficients a2n = (−1)na0/(2n)! for
even n and a0 = 1 (red dots) and
a2n+1 = (−1)na1/(2n + 1)! for odd n
and a1 = 1 (blue dots).

11 Note that the sum
∞

∑
n=0

x2n+1

contains only odd powers of x.

power series Equation 11.20 results in the following power series

a1

∞

∑
n=0

(−1)n 1
(2n + 1)!

x2n+1

Combining these results we arrive at the result

y(x) = a0

∞

∑
n=0

(−1)n 1
(2n)!

x2n + a1

∞

∑
n=0

(−1)n 1
(2n + 1)!

x2n+1

Referring to our results for power series expansions of familiar functions
explored in Chapter 7, including Equation 8.4 and Equation 8.3, we recognize
that11

cos(x) =
∞

∑
n=0

(−1)n

(2n)!
x2n sin(x) =

∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1

We can reformulate our result as

y(x) = a0 cos(x) + a1 sin(x)

Applying the boundary condition y(0) = 3 leads to y(0) = a0 = 3, while the
boundary condition y′(0) = 1 leads to a1 = 1. Our final solution is

y(x) = 3 cos(x) + sin(x)

which can be validated by inserting our result for y(x) into Equation 11.19

and proving the equality.
We have used the power series method to derive again familiar solutions

to first and second order ordinary differential equations. However, the power
series method also provides a general means to solve more complicated
ordinary differential equations that arise in the physical sciences. Specific
examples of differential equations encountered in quantum theory, when
modeling the translations of atoms and molecules, the vibrations of chemical
bonds, the electronic properties of atoms, and the rotations of molecules, are
explored in the complements.
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A11 Quantum theory of a particle in a box

Consider the time-independent Schrödinger equation for a particle in one
dimension:

− h̄2

2m
d2

dx2 ψ(x) = Eψ(x) (11.23)

where h̄ = h/2π, h is Planck’s constant, m is the mass of the particle, E is the
particle’s energy, and ψ(x) is the wave function describing the extent of the
quantum particle along x. The particle is confined to a one-dimensional box
defined by 0 ≤ x ≤ L. The boundary conditions define the value of the wave
function at the two ends of the box:

ψ(0) = ψ(L) = 0

We require two boundary conditions for any second order differential equa-
tion. Since we interpret the square of the wave function, |ψ(x)|2, as a proba-
bility distribution, once we solve Equation 11.23 for ψ(x), we will also impose
the normalization condition ∫ L

0
|ψ(x)|2dx = 1

This is a second order ordinary differential equation, and we can solve it
using the methods developed in this chapter. We start by inserting eαx for
ψ(x) in Equation 11.23 to find the auxiliary equation

− h̄2

2m
α2 = E

As E ≥ 0, we find the pure imaginary roots

α± = ±i

√
2mE

h̄2

and expect an oscillatory solution (see Figure 11.5). The general solution can
be written

ψ(x) = c1 exp

(
i

√
2mE

h̄2 x

)
+ c2 exp

(
−i

√
2mE

h̄2 x

)

We can determine the values of the coefficients c1 and c2 by applying the
boundary conditions. Knowing that

ψ(0) = c1 + c2 = 0

tells us that c1 = −c2, so that

ψ(x) = c1 exp

(
i

√
2mE

h̄2 x

)
− c1 exp

(
−i

√
2mE

h̄2 x

)
= 2ic1 sin

(√
2mE

h̄2 x

)

where we have used the identity sin(x) = 1
2i (e

ix − e−ix).
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xL

ψn(x) ψ1(x)

ψ2(x)

ψ3(x)

0

Figure 11.10: The wave function
ψn(x) for a particle confined to a
box of length L. Three possible wave
functions are shown for n = 1, 2
and 3 corresponding to energies
E1 = h2/8mL2, E2 = 4h2/8mL2, and
E3 = 9h2/8mL2.

xL

|ψn|2

0

|ψ1|2|ψ2|2 |ψ3|2

Figure 11.11: The modulus squared
of the wave function |ψn(x)|2 for a
particle confined to a box of length
L. Three possible wave functions
are shown for n = 1, 2 and 3. The
area under each curve is unity
making each |ψn(x)|2 a normalized
probability distribution.

Knowing that

ψ(L) = 2ic1 sin

(√
2mE

h̄2 L

)
= 0

it must be that √
2mE

h̄2 L = nπ n = 1, 2, 3, . . .

This result provides us with a solution for the allowed values of the energy

En =
n2h2

8mL2 n = 1, 2, 3, . . . (11.24)

We know the wave function is normalized such that∫ L

0
|ψ(x)|2dx = 1 = −4c1

2
∫ L

0
sin2

(nπx
L

)
dx = −4c1

2 L
2

where the integral can be taken using the trigonometric half-angle identity

sin2(ax) =
1
2
(1− cos(2ax)), noting that the integral over the cosine term will

be zero. This allows us to solve for the coefficient

c1 = −
i
2

√
2
L

As such, our final result for the solution to Equation 11.23 is

ψn(x) =





√
2
L sin

( nπx
L
)

0 ≤ x ≤ L

0 everywhere else

for n = 1, 2, 3, . . .
Examples of the wave function ψn(x) and the modulus squared of the

wave function |ψn(x)|2 are provided in Figure 11.10 and Figure 11.11 for
n = 1, 2, and 3. Note that each solution ψn(x) has n half-oscillations in the
box. As n increases, the number of half-oscillations increases, reflecting
the increasing energy of the particle. Returning to Equation 11.23, we note
that the second derivative of ψ(x) is proportional to E. As E increases, the
curvature of the wave function increases, reflected in an increasing number of
oscillations in the box.

Finally, inserting our result for ψn(x) into our original differential equa-
tion, we find

− h̄2

2m
d2

dx2 ψn(x) = − h̄2

2m

[
−
(nπ

L

)2
√

2
L

sin
(nπx

L

)]

=
h̄2

2m

(nπ

L

)2
ψn(x) = Enψn(x)

The resulting allowed energies En for our particle in a box agree with those
in Equation 11.24, validating our solution. This example demonstrates
the effectiveness of our general approach to solving linear second order
differential equations. Subsequent complements apply this approach to
differential equations arising in classical theory of motion.
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x

V(x)

0

F(x)

m

x0
Figure 11.12: The quadratic potential
energy function V(x) and the
corresponding force F(x).

12 Note that the velocity

v =
dx
dt

=
d
dt
(x− x0) =

dy
dt

and

a =
d2x
dt2 =

d2y
dt2

for the acceleration are unchanged
by this transformation.

B11 Classical theory of motion of a harmonic oscillator

In Chapter 7 we found that a mass on a spring or a vibrating bond between
two atoms can be modeled as a harmonic oscillator with potential energy

V(x) =
1
2

κ(x− x0)
2

and force

F(x) = − dV
dx

= −κ(x− x0)

where x is the displacement of the oscillator from its mechanically stable
position at x0 and κ is the force constant. When x > x0, the force acts in the
negative direction to shorten the oscillator. When x < x0, the force acts in
the positive direction to extend the oscillator. And when x = x0, the force is
zero and the oscillator is in a state of mechanical equilibrium. These results are
depicted in Figure 11.12.

The velocity is the rate of change in the position with respect to time:

v =
dx
dt

The total energy of the oscillator is the sum of the kinetic energy and poten-
tial energy:

E =
1
2

mv2 +
1
2

κ(x− x0)
2

The total energy is constant in time.
The acceleration is the rate of change in the velocity with respect to time:

a =
dv
dt

=
d2x
dt2

When a force acts on the oscillator, the mass accelerates according to New-
ton’s equation of motion ma = F, or

m
d2x
dt2 = −κ(x− x0)

where κ > 0 is the force constant. This is a linear second order ordinary
differential equation. It can be solved to determine the position of the mass,
x(t), as a function of time.

We can reform the equation in terms of the variable y(t) = x(t) − x0,
representing the displacement of the oscillator from its equilibrium position:12

m
d2y
dt2 = −κy

We would like to solve this equation to determine the position of the oscilla-
tor as a function of time y(t). Substituting eαt for y(t) leads to

m
d2

dt2 eαt = mα2eαt = −κeαt
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t

0 x(t)x0

v(t)0
√

2E
m−

√
2E
m

y(t)0 y0

T

2T

Figure 11.13: The trajectory of the
harmonic oscillator shown in terms
of the position, x(t), the displaced
coordinate, y(t) = x(t)− x0, and the
velocity, v(t), as a function of t. The
period of oscillation is T = 2π/ω.
The corresponding velocity oscillates
between ±

√
2E/m. Note that the

velocity (red) is the derivative of the
position (black) with respect to time.

which leads to the auxiliary equation

mα2 = −κ

with purely imaginary roots

α± = ±i
√

κ

m

and the solution

y(t) = c1 exp
(

i
√

κ

m
t
)
+ c2 exp

(
−i
√

κ

m
t
)

The expression describes undamped oscillatory motion.
The time scale for the dynamics of the oscillator can be defined either by

the linear frequency of motion

ν =
1

2π

√
κ

m

or equivalently by the angular frequency

ω =

√
κ

m
= 2πν

The period of oscillation is

T =
1
ν
=

2π

ω

The larger the force constant, the higher the frequency of oscillation. The
heavier the mass, the lower the frequency of oscillation.

With these definitions, we can reformulate y(t) = x(t)− x0 as

y(t) = c1 exp (iωt) + c2 exp (−iωt)

We assume that at t = 0 the oscillator is displaced to y0 and the velocity is
zero

y(0) = y0 v(0) =
dy
dt

∣∣∣
t=0

= 0

As such, the initial total energy of the oscillator is E(0) = 1
2 κy2

0. Applying the
initial condition for the velocity, we find

dy
dt

∣∣∣
t=0

=
[
ic1ωeiωt − ic2ωe−iωt

]
t=0

= ic1ω− ic2ω = 0

Accordingly, c1 = c2 so that

y(t) = c1 [exp (iω) + exp (−iω)] = 2c1 cos (ωt)

Applying the second initial condition, we find

y(0) = 2c1 cos (ωt)
∣∣∣
t=0

= 2c1 = y0
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E(0)

E(t)

0 t

T(t) U(t)

Figure 11.14: The kinetic energy,
T(t), potential energy, U(t), and
total energy E(t) = T(t) + U(t) of
the harmonic oscillator as a function
of t. The total energy is conserved
and is constant in time (black line).

13 Named for German mathemati-
cian Emmy Noether (1882-1935)
whose work illuminated the relation-
ship between conserved quantities,
such as energy and angular momen-
tum, and underlying symmetries
of the system, such as time and
rotation.

so that the constant
c1 =

1
2

y0

Our final result for the position and velocity is

y(t) = y0 cos (ωt) v(t) =
dy
dt

= −y0ω sin (ωt)

This result is depicted in Figure 11.13 which shows the position as a function
of time in terms of x(t) and y(t) over three periods of oscillation T = 2π/ω.

With a knowledge of the position and velocity of the oscillator as a func-
tion of time we can determine the total energy:

E(t) =
1
2

mv(t)2 +
1
2

κy(t)2

=
1
2

m (−y0ω sin (ωt))2 +
1
2

κ (y0 cos (ωt))2

=
1
2

mω2y2
0 sin2 (ωt) +

1
2

κy2
0 cos2 (ωt)

=
1
2

κy2
0 sin2 (ωt) +

1
2

κy2
0 cos2 (ωt)

=
1
2

κy2
0

During the vibration of the oscillator, the total energy is conserved and equals
the initial energy:

E(t) = E(0) =
1
2

κy2
0

Figure 11.14 shows the complementary oscillations in the kinetic and poten-
tial energies. Potential energy is transformed to kinetic energy, and kinetic
energy is transformed to potential energy in a repeating cycle, while the total
energy remains constant.

It is interesting to consider the conservation of total energy

dE
dt

= 0 =
d
dt

(
1
2

mv2 +
1
2

κ(x− x0)
2
)

Evaluating the total time derivative leads to

d
dt

(
1
2

mv2 +
1
2

κ(x− x0)
2
)
= mv

dv
dt

+ κ(x− x0)
dx
dt

= mva + vκ(x− x0) = 0

Canceling the common value of v, we find

ma + κ(x− x0) = 0

or
ma = −κ(x− x0) = F(x)

which is Newton’s equation of motion. In this case of energy-conserving
dynamics in one dimension, the conservation of energy implies Newton’s
equation of motion. This can be thought of as a special case of Noether’s
theorem.13 The principle of conservation of energy (that the energy is constant

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION



282 classical theory of a damped harmonic oscillator

14 The total energy of our oscillator
is

E =
κ

2
y2 +

1
2m

p2

Dividing by E we find

1 =
κ

2E
y2 +

1
2mE

p2 =
y2

a2 +
p2

b2

which is the equation of an ellipse

where a =
√

2E
κ and b =

√
2mE (see

Supplement S2).

in time) is a consequence of an underlying symmetry, the invariance under
translation in time. That is, when the time changes, the energy remains
constant.

Finally, note that the position and velocity can also be written

y(t) =

√
2E
κ

cos (ωt) v(t) =
dy
dt

= −
√

2E
m

sin (ωt)

A slightly different set of equations defining the oscillator’s motion are
written in terms of the position and linear momentum p(t) = mv(t):

y(t) =

√
2E
κ

cos (ωt) p(t) = m
dy
dt

= −
√

2mE sin (ωt)

x(t)

p(t)

√
2mE

−
√

2mE

√
2E
k−

√
2E
k

Figure 11.15: The motion of the
harmonic oscillator defined by the
position, y(t), and momentum, p(t),
as a function of t. The elliptical
curve is the phase portrait of the
harmonic oscillator.

These equations define a trajectory on the yp-plane formed by the position,
y, and the momentum, p. The yp-plane is called phase space. All possible
states of the oscillator’s dynamics are represented in this phase space of
position and momentum. The constant total energy restricts the position and
momentum to move in a cycle on an elliptical curve defined by14

E =
κ

2
y2 +

1
2m

p2

The elliptical curve defining the states visited in the oscillatory dynamics of
the oscillator is called the phase portrait. Each total energy results in a unique
phase portrait, an elliptical phase portrait that grows larger as the energy
grows. This result is shown in Figure 11.15.

C11 Classical theory of a damped harmonic oscillator

We found that a mass on a spring or a vibrating bond between two atoms can
be modeled as a harmonic oscillator with potential energy

V(x) =
1
2

κ(x− x0)
2
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t

0 x(t)x0

v(t)0
√

2E
m−

√
2E
m

y(t)0 y0

T

2T

Figure 11.16: The trajectory of
the damped harmonic oscillator
shown in terms of the position,
x(t), the displaced coordinate,
y(t) = x(t)− x0, and the velocity,
v(t), as a function of t. The period
of the undamped oscillator is
T = 2π/ω.

and corresponding force

Fspring = − dV
dx

= −κ(x− x0)

where x is the displacement of the oscillator from its mechanically stable
position at x0 and κ is the force constant. The corresponding velocity is the
rate of change in the position with time, or

v =
dx
dt

and the linear momentum is p = mv.
The motion of this model oscillator is undamped in time. Once it begins to

oscillate, it continues to oscillate with fixed frequency of motion and constant
energy. However, physical oscillators such as a mass on a spring in the air
or a vibrating molecule in a liquid will lose energy to the surroundings over
time, damping the motion of the oscillator. To model this phenomenon, we
introduce an additional force acting on the mass in the form of a frictional
damping force

Ffriction = −γ
dx
dt

= −γv

where γ ≥ 0 and the frictional force is proportional to the velocity. If the
velocity is positive, the damping force is in the negative direction, slowing
the oscillator. If the velocity is negative, the damping force is in the positive
direction, slowing the oscillator. As such, the frictional force acts to reduce
the speed, removing energy from the system and slowing the oscillator
until the speed eventually reaches zero. This behavior is demonstrated
in Figure 11.16 which can be compared with the motion of an undamped
harmonic oscillator shown in Figure 11.13.

The acceleration is the rate of change in the velocity with time

a =
dv
dt

=
d2x
dt2

The equation of motion for the oscillator is given by Newton’s equation
F = ma where m is the mass and a is the acceleration:

m
d2x
dt2 = Fspring + Ffriction = −κ(x− x0)− γ

dx
dt

We can reform the equation in terms of the variable y = x− x0, representing
the displacement of the oscillator from its equilibrium position

m
d2y
dt2 = −κy− γ

dy
dt

We would like to solve this equation to determine the displacement of the
oscillator, y(t), as a function of time. Substituting eαt for y(t) leads to

m
d2

dt2 eαt = −κeαt − γ
d
dt

eαt
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15 In the special case γ = 2mω
we find ∆α = 0, the double root
α = −γ/2m, and the solution

y(t) = c1eαt + c2teαt

In the modeling of physical systems,
it is possible but very improbable
that the friction, frequency, and
mass will exactly satisfy the equality
γ = 2mω. As such, this special case
will not be discussed in detail.

Evaluating the derivatives, we find

mα2eαt = −κeαt − αγeαt

which reduces to the auxiliary equation

α2 + α
γ

m
+

κ

m
= 0

with roots

α± =
1
2

[
− γ

m
±
√( γ

m

)2
− 4κ

m

]
= − γ

2m
±
√( γ

2m

)2
− κ

m

This leads to the general solution for the displacement as a function of time,
written

y(t) = c1eα+t + c2eα−t

Let’s consider the nature of the roots, α±, that can be purely imaginary,
complex, or real depending on the magnitude of γ. In the case that γ = 0,
there is no friction and we recover the pure imaginary roots

α± = ±i
√

κ

m
= ±iω

associated with undamped oscillatory motion. In the case that 0 < γ < 2κ,
there is low friction and the roots will be complex, with real and imaginary
terms

α± = −
γ

2m
±
√( γ

2m

)2
−ω2 = − γ

2m
± iω′

where

ω′ =

√
ω2 −

( γ

2m

)2
= ω

√
1−

( γ

2mω

)2

For these complex roots, there is an exponential damping term, with rate of
damping γ/2m, and an oscillatory term, with frequency ω′ shifted relative to
the frequency of undamped motion. In this case, the motion of the oscillator
is underdamped (see Figure 1.12). Finally, in the case that γ ≥ 2κ, there is high
friction and the roots are purely real:

α± = −
γ

2m
±
√( γ

2m

)2
−ω2

In this case, the motion of the oscillator is overdamped (see Figure 1.12).
In each of the three cases, we can write

α± = α0± ∆α

where

α0 = −
γ

2m
∆α =

√( γ

2m

)2
−ω2

and ∆α may be real or imaginary.15 With this notation, our solution takes the
form

y(t) = c1eα+t + c2eα−t = eα0t
(

c1e∆αt + c2e−∆αt
)
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T(t) U(t)

E(0)

E(t)

0 t
Figure 11.17: The kinetic energy,
T(t), potential energy, U(t), and
total energy E(t) = T(t) + U(t) of
the damped harmonic oscillator.
The total energy is monotonically
decreasing as a function of time
(black line).

Considering the initial conditions

y(0) = y0
dy
dt

∣∣∣
t=0

= 0

we find
y(0) = c1 + c2 = y0

and

dy
dt

∣∣∣
t=0

=
d
dt

[
eα0t

(
c1e∆αt + c2e−∆αt

)]

=
[

α0eα0t
(

c1e∆αt + c2e−∆αt
)
+ ∆α eα0t

(
c1e∆αt − c2e−∆αt

)]
t=0

= α0 (c1 + c2) + ∆α (c1 − c2) = 0

As such, c2 = y0 − c1 and

c1 = −
(α0− ∆α)y0

2∆α
c2 =

(α0 + ∆α)y0
2∆α

Note that when γ = 0, α0 = 0 and we recover the coefficients expected for the
harmonic oscillator in the absence of friction, where c1 = c2 = y0/2. For the
general case, we find

y(t) = y0eα0t
[
cosh (∆αt)− α0

∆α
sinh (∆αt)

]

v(t) = y0eα0t
[
−ω2

∆α
sinh (∆αt)

]

where high friction leads to a real ∆α, real roots, and exponential damping.
In contrast, low friction leads to an imaginary ∆α, complex roots, and an
exponentially damped oscillator. We can also write the linear momentum as

p(t) = y0eα0t
[
−mω2

∆α
sinh (∆αt)

]

The solution is shown in Figure 11.16.
The total energy of the damped harmonic oscillator is defined

E(t) =
1
2

mv(t)2 +
1
2

κy(t)

An example of the time-dependence of E(t) is shown in Figure 11.17 for an
underdamped harmonic oscillator for which 0 < γ < 2mω. For γ > 0,
the vibration of the oscillator is damped and the total energy decreases
monotonically from its initial value

E(0) =
1
2

κy2
0

When the kinetic energy reaches a maximum, the velocity is maximized
as is the rate of frictional damping. This is reflected in the variation in the
total energy, where periods of higher kinetic energy are also periods of
greater energy loss. This leads to the stepping behavior observed in the total

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION

COPYRIGHT ©2022 UNIVERSITY SCIENCE BOOKS, ALL RIGHTS RESERVED : PREPUBLICATION VERSION



286 power series solutions to special equations in quantum theory

16 A classic reference for the
properties of special functions is
Abramowitz and Stegun or simply
AS which still serves as a valuable
compendium of special functions
and their properties.

Milton Abramowitz and Irene A.
Stegun, editors. Handbook of Math-
ematical Functions with Formulas,
Graphs, and Mathematical Tables
[1964]. Dover Publications, first
edition, 1972. ISBN 0-486-61272-4

energy as a function of time. Compare this behavior to that of the undamped
harmonic oscillator shown in Figure 11.14 where the trajectory performs a
repeating elliptical orbit in phase space.

x(t)

p(t)

√
2mE

−
√

2mE

√
2E
k−

√
2E
k

Figure 11.18: The phase portrait
of the damped harmonic oscillator
(red). The gray ellipse is formed
by the values of position and
momentum consistent with the
initial energy E(0). The continuous
energy loss of the damped oscillator
is reflected in the narrowing of the
inward spiral with increasing time.

All possible states of the oscillator’s dynamics are represented in this
phase space of position and momentum. Our solutions for y(t) and p(t)
define a trajectory on the yp-plane called the phase portrait. For an undamped
harmonic oscillator, the position and momentum move in a repeating cycle
restricted to an elliptical curve defined by the constant total energy

E(t) =
κ

2
y(t)2 +

1
2m

p(t)2 = E(0)

For a damped harmonic oscillator, the total energy of the oscillator decreases
with time. As a result, the breadth of the elliptical path decreases with time
leading to a phase portrait with the form of an inward elliptical spiral. This
behavior is depicted in Figure 11.18 for a harmonic oscillator for which 0 <

γ < 2mω and the motion is underdamped. This behavior can be compared to
that of the undamped harmonic oscillator shown in Figure 11.15.

D11 Power series solutions to special equations in quantum theory

A number of special ordinary differential equations arise in the quantum
theory of matter when solving the Schrödinger equation for electronic energy
of a one electron atom or the rotations and vibrations of a diatomic molecule.
These special differential equations may be solved using power series. In each
case, the resulting power series represents a type of special function that finds
wide use in the physical sciences.16

Special functions explored in this complement include the Hermite poly-
nomials, found in the quantum theory of vibrational motion, the Laguerre
polynomials, found in the quantum theory of the hydrogen atom, and the
Legendre polynomials, found in the quantum theory of rotational motion and
multipole expansions in the classical theory of electricity and magnetism.
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17 Named for French mathematician
Charles Hermite (1822-1901).

18 Equivalently, you can introduce a
new index n′ = n− 2, substituting
n→ n′ + 2. You can then rewrite the
new index n′ as n before combining
the sums.

Hermite’s equation and Hermite polynomials

In the quantum theory of the harmonic oscillator, a special differential
equation appears:

d2

dx2 y(x)− 2x
d

dx
y(x) + 2αy(x) = 0 (11.25)

where α is a constant. This is known as Hermite’s equation.17 Proposing a
power series solution of the form

y(x) =
∞

∑
n=0

anxn

we find that Equation 11.25 can be written

∞

∑
n=0

ann(n− 1)xn−2 − 2x
∞

∑
n=0

annxn−1 + 2α
∞

∑
n=0

anxn = 0 (11.26)

In order to identify the recursion relation that defines the coefficients in our
series, we must transform the first two series so that they can be combined
with the third.

In the first series, the coefficients are proportional to n(n− 1), so that the
n = 0 and n = 1 terms are always zero. Removing the n = 0 and n = 1 terms
from the first series results in

∞

∑
n=0

ann(n− 1)xn−2 →
∞

∑
n=2

ann(n− 1)xn−2

Now the series starts with n = 2, but we would like it to start from n = 0. As
such, we shift the index by n→ n + 2 so that18

∞

∑
n=2

ann(n− 1)xn−2 →
∞

∑
n=0

an+2(n + 2)(n + 1)xn

For the second series, we simply absorb the factor of x in the sum, so that

−2x
∞

∑
n=0

annxn−1 = −2
∞

∑
n=0

annxn

Inserting these results into Equation 11.26 leads to

∞

∑
n=0

an+2(n + 2)(n + 1)xn − 2
∞

∑
n=0

annxn + 2α
∞

∑
n=0

anxn = 0

Combining the sums, we find

∞

∑
n=0

[an+2(n + 2)(n + 1)− 2ann + 2αan] xn = 0

and the condition

an+2(n + 2)(n + 1)− 2ann + 2αan = 0

This condition can be used to derive a recursion relation relating an+2 to an.
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19 The negative sign in the recursion
relation signals the fact that the
coefficients lead to an alternating
series.

20 The Hermite polynomials were
originally described by Pierre-Simon
Laplace (1749-1827).

In particular, we find the recursion relation

an+2 = − 2(α− n)
(n + 2)(n + 1)

an

The even indices can be generated from a0 as19

a2 = −2α

2
a0 a4 = −2(α− 2)

4 · 3 a2 =
22α(α− 2)

4!
a0

leading to the following power series in even powers of x:

y0(x) = a0

[
1− 2α

2!
x2 +

22α(α− 2)
4!

x4 −+ . . .
]

The odd indices can be generated from a1 as

a3 = −2(α− 1)
3 · 2 a1 a5 = −2(α− 3)

5 · 4 a3 =
22(α− 3)(α− 1)

5!
a1

leading to the following power series in odd powers of x:

y1(x) = a1

[
x− 2(α− 1)

3!
x3 +

22(α− 3)(α− 1)
5!

x5 −+ . . .
]

The overall solution is written as a linear superposition of the two independent
solutions y0(x) and y1(x). The remaining coefficients a0 and a1 are defined by
the boundary conditions.

Let’s examine the results for various values of the parameter α. We will
find that the solutions to Hermite’s equation form a series of polynomial
equations known as the Hermite polynomials.20 In defining the Hermite
polynomials, it is helpful to consider the even power series, y0(x), and odd
power series, y1(x), separately. When α = 0, Hermite’s equation is

d2

dx2 y(x)− 2x
d

dx
y(x) = 0

with a solution defined by the even power series

y0(x) = a0

as all higher order terms contain a multiplicative factor of α and are therefore
zero. This is the Hermite polynomial H0(x) = 1 for a0 = 1. For α = 1,
Hermite’s equation is

d2

dx2 y(x)− 2x
d

dx
y(x) + 2y(x) = 0

with a solution defined by the odd power series

y1(x) = a1x

as all higher order terms in the series contain a multiplicative factor of (α− 1)
and are zero. This is the Hermite polynomial H1(x) = 2x when a1 = 2. When
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21 Named for French mathematician
Edmond Laguerre (1834-1886).

α = 2, Hermite’s equation is

d2

dx2 y(x)− 2x
d

dx
y(x) + 4y(x) = 0

with a solution defined by the even power series

y0(x) = a0

(
1− 2x2

)

which is the Hermite polynomial H2(x) = 4x− 2 when a0 = −2.
Repeating this process, we find that when α = 3, the Hermite polynomial

H3(x) = 8x3 − 12x when a1 = −12. When α = 4, the Hermite polynomial
H4(x) = 16x4 − 48x2 + 12 when a0 = 12. The first five Hermite polynomials
are presented in Figure 11.19.

−80

−40

0

40

80

−2 −1 0 1 2
x

H0(x)
H1(x)

H2(x)

H3(x)

H4(x)
Figure 11.19: Variation in the first
five Hermite polynomials Hn(x)
over the range x ∈ [−2.5, 2.5].

Our success in solving Hermite’s equation demonstrates the applicability
of the power series method to the solution of linear second order differential
equations with non-constant coefficients. The resulting solutions to Hermite’s
equation consist of an infinite number of Hermite polynomials. The Hermite
polynomials possess special properties that will be explored in Chapter 13 in
the complements.

Laguerre’s equation and Laguerre polynomials

In the quantum theory of the one electron atom a special differential equation
describes the radial dependence of the electron’s wave function:

x
d2

dx2 y(x)− (1− x)
d

dx
y(x) + αy(x) = 0 (11.27)

where α is a constant. This is known as Laguerre’s equation.21 Proposing a
power series solution

y(x) =
∞

∑
n=0

anxn
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22 Equivalently, you can introduce a
new index n′ = n− 1, substituting
n→ n′ + 1. You can then rewrite the
new index n′ as n before combining
the sums.

23 The negative sign in the recursion
relation signals the fact that the
coefficients lead to an alternating
series.

we find that Equation 11.27 can be written

x
∞

∑
n=0

ann(n− 1)xn−2 − (1− x)
∞

∑
n=0

annxn−1 + α
∞

∑
n=0

anxn = 0 (11.28)

We must transform the first two series so that they can be combined with the
third.

In the first series, the coefficients are proportional to n, so the n = 0 term is
always zero. Removing the n = 0 term from the first series and absorbing the
factor of x leads to

x
∞

∑
n=0

ann(n− 1)xn−2 →
∞

∑
n=1

ann(n− 1)xn−1

Shifting the index by n→ n + 1 results in22

∞

∑
n=1

ann(n− 1)xn−1 →
∞

∑
n=0

an+1(n + 1)nxn

which is in the desired form in terms of the range of the index n and the sum
over xn, weighted by constant coefficients. We transform the second series by
distributing the factor of (1− x) resulting in two series

(1− x)
∞

∑
n=0

annxn−1 =
∞

∑
n=0

annxn−1 −
∞

∑
n=0

annxn

In the first series the coefficients are proportional to n so the n = 0 term is
always zero. Removing the n = 0 term from the first series leads to

∞

∑
n=0

annxn−1 →
∞

∑
n=1

annxn−1

Finally, shifting the index in the first series by n→ n + 1 results in

∞

∑
n=1

annxn−1 →
∞

∑
n=0

an+1(n + 1)xn

Inserting these results in Equation 11.28 leads to

∞

∑
n=0

[an+1(n + 1)n + an+1(n + 1)− ann + αan] xn = 0

and the condition

an+1(n + 1)n + an+1(n + 1)− ann + αan = 0

This leads to the recursion relation23

an+1 = − α− n
(n + 1)2 an

The coefficients can be generated starting from a0 as

a1 = −αa0 a2 =
(α− 1)α
(2!)2 a0 a3 = − (α− 2)(α− 1)α

(3!)2 a0
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leading to the power series solution

y(x) = a0

[
1− αx +

(α− 1)α
(2!)2 x2 − (α− 2)(α− 1)α

(3!)2 x3 +− . . .
]

Let’s examine our results for various values of the parameter α. We will
find that the solutions to Laguerre’s equation form a series of polynomial
equations known as the Laguerre polynomials. When α = 0, Laguerre’s
equation is

x
d2

dx2 y(x)− (1− x)
d

dx
y(x) = 0

with the solution
y(x) = a0

as all higher order terms contain a multiplicative factor of α and are therefore
zero. This is the Laguerre polynomial L0(x) = 1 for a0 = 1. For α = 1,
Laguerre’s equation is

x
d2

dx2 y(x)− (1− x)
d

dx
y(x) + y(x) = 0

and the solution is
y(x) = a0(1− x)

as all higher order terms in the series contain a multiplicative factor of (α− 1)
and are zero. This is the Laguerre polynomial L1(x) = 1− x when a0 = −1.

Repeating this process for α = 2, we find the Laguerre polynomial
L2(x) = 1

2
(

x2 − 4x + 2
)

when a0 = 1. When α = 3, we find the Laguerre
polynomial L3(x) = 1

6
(
−x3 + 9x2 − 18x + 6

)
when a0 = 1. The first four

Laguerre polynomials are depicted in Figure 11.20.

−10

−5

0

5

10

15

−5 0 5 10
x

L0(x)

L1(x)

L2(x)

L3(x)

L4(x)

Figure 11.20: Variation in the first
five Laguerre polynomials Ln(x)
over the range x ∈ [−10, 15].

The Laguerre polynomials possess special properties that will be explored
in Chapter 13 in the complements.
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24 Named for French mathematician
Adrien-Marie Legendre (1752-1833).

25 Equivalently, you can introduce a
new index n′ = n− 2, substituting
n→ n′ + 2. You can then rewrite the
new index n′ as n before combining
the sums.

Legendre’s equation and Legendre polynomials

In the quantum theory of rotational motion of a diatomic molecule, a special
differential equation describes the rotational wave function:

(1− x2)
d2

dx2 y(x)− 2x
d

dx
y(x) + l(l + 1)y(x) = 0 (11.29)

where l is a constant. This is known as Legendre’s equation.24 Proposing a
power series solution

y(x) =
∞

∑
n=0

anxn

we find that Equation 11.29 can be written

(1− x2)
∞

∑
n=0

ann(n− 1)xn−2 − 2x
∞

∑
n=0

annxn−1 + l(l + 1)
∞

∑
n=0

anxn = 0 (11.30)

We must transform the first two series so that they can be combined with the
third.

We transform the first series by distributing the factor of (1− x2), resulting
in two series

(1− x2)
∞

∑
n=0

ann(n− 1)xn−2 →
∞

∑
n=0

ann(n− 1)xn−2 −
∞

∑
n=0

ann(n− 1)xn

In the first series the coefficients are proportional to n(n− 1), so that the n = 0
and n = 1 terms are always zero. Removing the n = 0 and n = 1 terms from
the first series results in

∞

∑
n=0

ann(n− 1)xn−2 →
∞

∑
n=2

ann(n− 1)xn−2

Now the series starts with n = 2 but we would like it to start from n = 0. As
such, we shift the index by n→ n + 2 so that25

∞

∑
n=2

ann(n− 1)xn−2 →
∞

∑
n=0

an+2(n + 2)(n + 1)xn

For the second series in Equation 11.30, we absorb the factor of −2x, resulting
in

−2x
∞

∑
n=0

annxn−1 = −2
∞

∑
n=0

annxn

Inserting these results in Equation 11.30 leads to

∞

∑
n=0

[
an+2(n + 2)(n + 1)− ann(n− 1)− 2ann

+ l(l + 1)an

]
xn = 0

and the condition

an+2(n + 2)(n + 1)− ann(n− 1)− 2ann + l(l + 1)an = 0
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We find the recursion relation

an+2 =
(n + 1)n− l(l + 1)
(n + 2)(n + 1)

an = − [l + (n + 1)] (l − n)
(n + 2)(n + 1)

an

where the negative sign leads to an alternating series.
The even indices can be generated from a0 as

a2 = − (l + 1)l
2

a0 = − (l + 1)l
2!

a0

a4 = − (l + 3)(l − 2)
4 · 3 a2 =

(l + 3)(l − 2)(l + 1)l
4!

a0

and so on, leading to the following power series in even powers of x:

y0(x) = a0

[
1− (l + 1)l

2!
x2

+
(l + 3)(l − 2)(l + 1)l

4!
x4 −+ . . .

]

The odd indices can be generated from a1 as

a3 = − (l + 2)(l − 1)
3 · 2 a1 = − (l + 2)(l − 1)

3!
a1

a5 = − (l + 4)(l − 3)
5 · 4 a3 =

(l + 4)(l − 3)(l + 2)(l − 1)
5!

a1

and so on, leading to the following power series in odd powers of x:

y1(x) = a1

[
x− (l + 2)(l − 1)

3!
x3 +

(l + 4)(l − 3)(l + 2)(l − 1)
5!

x5 −+ . . .
]

The overall solution is written as a linear superposition of the two independent
solutions y0(x) and y1(x). The remaining coefficients a0 and a1 are defined by
the boundary conditions.

Let’s examine our results for various values of the parameter l. We will
find that the solutions to Legendre’s equation form a series of polynomial
equations known as the Legendre polynomials. In defining the Legendre
polynomials, it is helpful to consider the even power series, y0(x), and odd
power series, y1(x), separately. When l = 0, Legendre’s equation is

(1− x2)
d2

dx2 y(x)− 2x
d

dx
y(x) = 0

and the solution is
y(x) = a0

as all higher order terms contain a multiplicative factor of l and are therefore
zero. This is the Legendre polynomial P0(x) = 1 for a0 = 1. For l = 1,
Legendre’s equation is

(1− x2)
d2

dx2 y(x)− 2x
d

dx
y(x) + 2y(x) = 0

and the solution is
y(x) = a1x
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26 The constant e, also known as
Euler’s number or Napier’s constant,
was not well defined until the late
17th century.

as all higher order terms in the series contain a multiplicative factor of (l − 1)
and are therefore zero. This the Legendre polynomial P1(x) = x when a1 = 1.
When l = 2, Legendre’s equation is

(1− x2)
d2

dx2 y(x)− 2x
d

dx
y(x) + 6y(x) = 0

and the solution is
y(x) = a0

(
1− 3x2

)

which is the Legendre polynomial P2(x) = 1
2
(
3x2 − 1

)
when a0 = − 1

2 . When
l = 3, Legendre’s equation is

(1− x2)
d2

dx2 y(x)− 2x
d

dx
y(x) + 12y(x) = 0

and the solution is

y(x) = a1

(
x− 5

3
x3
)

which is the Legendre polynomial P3(x) = 1
2
(
5x3 − 3x

)
when a1 = −3. The

first four Legendre polynomials are depicted in Figure 11.21. The Legendre
polynomials possess special properties that will be explored in Chapter 13 in
the complements.

−1

0

1

−1 0 1
x

P0(x)

P1(x)

P2(x) P3(x)

Figure 11.21: Variation in the first
four Legendre polynomials Pl(x)
over the range x ∈ [−1, 1].

The differential equations discussed in this complement play a special
role in the quantum theory of atoms and molecules. We have found that
differential equations can be solved using one or more common functions such
as the exponentials and sinusoids.

The solution of these three differential equations using the power series
method led to the discovery of three new special functions, the Hermite,
Laguerre, and Legendre polynomials. It is good to remember that at one time
the exponential function was a special function as well.26 Through regular use,
we come to regard special functions as common.
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E11 End-of-chapter problems

How can it be that mathematics, being
after all a product of human thought
independent of experience, is so
admirably adapted to the objects of
reality?

Albert Einstein

Warm-ups

11.1 Consider the following second order ordinary differential equations.

(a)
d2y(x)

dx2 − 4y(x) = 0 (b)
d2y(x)

dx2 + 2
dy(x)

dx
+ 4y(x) = 0

(c)
d2y(x)

dx2 + 9y(x) = 0 (d)
d2y(x)

dx2 + 6
dy(x)

dx
= 0

In each case, assume the solution y(x) = eαx. Find the auxiliary equation and determine the two roots α±. Compose
the overall solution

y(x) = c1 eα+x + c2 eα−x

Apply the boundary conditions y(0) = 0 and
dy(x)

dx

∣∣∣
x=0

= 1 to determine the coefficients c1 and c2.

11.2 Consider the linear second order differential equation

d2y(x)
dx2 + 2

dy(x)
dx

+ y(x) = 0

(a) Assume the solution y(x) = eαx. Find the auxiliary equation and determine the roots α±. You should find double
roots where α+ = α− = α.

(b) Prove that
y(x) = c1 eαx + c2 x eαx

is a solution to the differential equation.

11.3 Consider the general second order ordinary differential equation

d2y(x)
dx2 + a(x)

dy(x)
dx

+ b(x) y(x) = 0

Prove that if y1(x) and y2(x) are each solutions to the differential equation, so is the linear superposition

y(x) = c1 y1(x) + c2 y2(x)

11.4 Reform the following sums so that the first term in the sum is n = 0

(a)
∞

∑
n=2

(n− 2)an−2xn (b)
∞

∑
n=2

n(n− 1)anxn−2 (c)
∞

∑
n=1

nanxn−1
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11.5 Consider the following recursion relations where n ≥ 0. In each case, derive a general expression for the
coefficient an in terms of a0.

(a) an+1 = − an

(n + 1)2 (b) an+1 =
n + 2

2(n + 1)
an (c) an+1 = − 2an

n + 1

11.6 Consider the second order differential equation

d2

dx2 y(x)− y(x) = 0

(a) Find two linearly independent power series solutions of the form

∞

∑
n=0

anxn

Start by determining recursion relations for the coefficients an. You should find two recursion relations, one for n
odd and one for n even.

(b) In each case, derive a general expression for an in terms of a0 or a1.

(c) Identify the common functions representing each series.

Homework exercises

11.7 The general solution for a homogeneous second order ordinary differential equation of the form

y(x) = c1 eibx + c2 e−ibx

can be rewritten
y(x) = c1

′ cos(bx) + c2
′ sin(bx)

Derive expressions for c1
′ and c2

′ in terms of c1 and c2.

11.8 The position of an oscillator, x(t), as a function of time, t, satisfies the second order differential equation

d2x(t)
dt2 + ω2x(t) = 0

where ω is a constant. Solve this equation for x(t) given the following initial conditions.

(a) x(0) = 0 and
dx
dt

∣∣∣
t=0

= u0 (b) x(0) = x0 and
dx
dt

∣∣∣
t=0

= u0

In each case, prove that x(t) oscillates with frequency ν =
ω

2π
and period T =

2π

ω
=

1
ν

.

11.9 The second order differential equation

d2 f (x)
dx2 +

25π2

L2 f (x) = 0

models the displacement, f (x), of a plucked string that is fixed at each end leading to the boundary conditions
f (0) = f (L) = 0 and d f

dx |x=0 = 5.
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(a) Determine the general solution of the form

f (x) = c1 eα+x + c2 eα−x

(b) Simplify your result by expressing your solution in terms of a sinusoidal function.

11.10 Consider the second order inhomogeneous ordinary differential equation describing the height, z(t), of a
mass, m, falling under the force of gravity with constant rate of acceleration, g, and experiencing a frictional drag

force proportional to the speed, u(t) =
dz(t)

dt
, written

m
d2z(t)

dt2 = −γ
dz(t)

dt
+ mg

where γ is the friction constant.

(a) Show that this equation is equivalent to the first order ordinary differential equation for the speed of the particle

du(t)
dt

+
γ

m
u(t) = g

(b) Solve the differential equation for u(t) given that u(0) = 0.

(c) Show that as t → ∞, the speed of the falling mass approaches a constant terminal speed uT =
mg
γ

as shown in

the figure below.

t

u(t)

0

mg
γ

11.11 Determine the coefficients an for which the equation

∞

∑
n=1

nanxn−1 + 2
∞

∑
n=0

anxn = 0

is satisfied. Substitue the resulting coefficients an in the power series

∞

∑
n=0

anxn

and identify the corresponding function.
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11.12∗ Consider the differential equation

(x2 + 1)
d2

dx2 y(x)− 4x
d

dx
y(x) + 6y(x) = 0

with the boundary conditions y(0) = 1 and y′(0) = 2.

(a) Propose a solution in the form of the power series

y(x) =
∞

∑
n=0

anxn

Derive the recursion relation

an+2 = − (n− 2)(n− 3)
(n + 2)(n + 1)

an

(b) Using the recursion relation above, determine the four coefficients an that are non-zero in terms of a0 and a1.

(c) Apply the boundary conditions to determine the solution for y(x).

11.13∗ Show that
c1 cos(ωt) + c2 sin(ωt) = A sin(ωt + ϕ)

where

A =
√

c1
2 + c2

2 ϕ = tan−1
(

c1

c2

)

or equivalently
c1 cos(ωt) + c2 sin(ωt) = A cos(ωt + ϕ)

where

A =
√

c1
2 + c2

2 ϕ = tan−1
(
− c2

c1

)

HINT: Make use of the trigonometric identities provided in Supplement S3. Consider working backward from the
identity cos(α + β) = cos(α) cos(β)− sin(α) sin(β). Also note that sin

(
tan−1(x)

)
= x√

x2+1
and cos

(
tan−1(x)

)
=

1√
x2+1

.

11.14∗ Consider the differential equation

d2

dx2 y(x)− d
dx

y(x) = y(x)

with the boundary conditions y(0) = 0 and y′(0) = 1.

(a) Derive the corresponding auxiliary equation and show that the two roots are α+ = ϕ and α− = 1− ϕ where

ϕ =
1
2

(
1 +
√

5
)

is the golden ratio.

(b) Using the result from (a) and the boundary conditions, determine the solution for y(x).

(c) Propose a solution to the original differential equation in the form of the power series

y(x) =
∞

∑
n=0

anxn
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and show that the coefficients
an =

1
n!

fn

where fn are the Fibonacci numbers and f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, and so on.

(d) Expand your result from (b) in a Maclaurin series. Compare that series term-by-term with the result from (c).
Show that

fn =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
=

1√
5

[
ϕn − (1− ϕ)n]

This equation relating the Fibonacci numbers to the golden mean is known as Binet’s formula.

11.15∗ Consider the second order differential equation known as Bessel’s equation

x2 d2y(x)
dx2 + x

dy(x)
dx

+ (x2 − c2)y(x) = 0

where c is a constant. The method we have developed in this chapter cannot be used to solve this problem as the
term x2y(x) leads to terms of order xn+2 in addition to the usual terms of order xn.

(a) Propose a solution of the form y(x) = xr
∞

∑
n=0

an xn. Inserting into Bessel’s equation will lead to a sum of two

power series. Assuming that a0 6= 0, show that a consistent solution can be found if (n+ r)(n+ r− 1)+(n+ r)−c2 = 0
for n = 0. Solve that equation to identify the two allowed values of r = c and r = −c.

(b) For r = c, show that a1 = 0 and therefore a2n+1 = 0 for n ≥ 1.

(c) For r = c, determine the recursion relation for the coefficients a2n in terms of a0. Use your coefficients to
determine the solution y+(x) to Bessel’s equation.

(d) Repeat steps (b) and (c) for r = −c to arrive at a second solution y−(x) to Bessel’s equation.
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