Contents
Introduction ..... xi
1 Functions and coordinate systems ..... 17
1.1 Survey of common functions of continuous variables ..... 17
1.2 Exploring coordinate systems and their utility ..... 27
$\mathrm{A}_{1}$ End-of-chapter problems ..... 34
2 Complex numbers and logarithms ..... 37
2.1 Complex numbers and the complex plane ..... 37
2.2 Special properties of logarithms ..... 43
$\mathrm{A}_{2}$ Visualizing complex functions of complex variables ..... 47
$B_{2}$ Application of logarithms and the logarithmic scale ..... 48
$\mathrm{C}_{2}$ Logarithms and Stirling's approximation ..... 49
$\mathrm{D}_{2}$ Connecting complex numbers and logarithms ..... 51
$\mathrm{E}_{2}$ End-of-chapter problems ..... 52
3 Differentiation in one and many dimensions ..... 55
3.1 Differentiating functions of one variable ..... 55
3.2 Partial derivatives of functions of many variables ..... 63
3.3 Infinitesimal change and the total differential ..... 66
$A_{3}$ Euler's theorem for homogeneous functions ..... 71
$B_{3}$ Geometric interpretation of the total differential ..... 72
$\mathrm{C}_{3}$ End-of-chapter problems ..... 74
4 Scalars, vectors, and vector algebra ..... 79
4.1 Fundamental properties of scalars and vectors ..... 79
4.2 Multiplication of vectors ..... 84
$\mathrm{A}_{4}$ Building orthogonal vectors using Gram-Schmidt orthogonalization ..... 91
$B_{4}$ End-of-chapter problems ..... 93
5 Scalar and vector operators ..... 97
5.1 Scalar operators ..... 97
5.2 Vector operators and the gradient and divergence ..... 101
$\mathrm{A}_{5}$ The force and the potential energy ..... 109
$B_{5}$ A survey of potential energy landscapes ..... 110
$C_{5}$ Explicit forms of vector operations ..... 112
$D_{5}$ Deriving explicit forms for vector operations ..... 116
$\mathrm{E}_{5}$ End-of-chapter problems ..... 125
6 Extremizing functions of many variables ..... 129
6.1 Extremizing functions of one and many variables ..... 129
6.2 The method of Lagrange undetermined multipliers ..... 133
$\mathrm{A}_{6}$ Variational calculation of the energy of a one-electron atom ..... 137
$\mathrm{B}_{6}$ Extremizing the multiplicity subject to constraints ..... 139
$\mathrm{C}_{6}$ End-of-chapter problems ..... 141
7 Integration in one and many dimensions ..... 145
7.1 Integrating functions of one variable ..... 145
7.2 Integrating functions of many variables ..... 158
$A_{7}$ An alternative to integration by parts for exponential integrals ..... 165
$B_{7}$ Evaluating the definite integral of a gaussian function ..... 166
$\mathrm{C}_{7}$ An alternative to integration by parts for gaussian integrals ..... 167
$D_{7}$ Properties of delta functions ..... 168
$\mathrm{E}_{7}$ End-of-chapter problems ..... 171
8 Sequences, series, and expansions ..... 177
8.1 Series, convergence, and limits ..... 177
8.2 Power series ..... 181
8.3 Expanding functions as Maclaurin and Taylor series ..... 184
$\mathrm{A}_{8}$ Taylor series expansions of potential energy functions ..... 191
$B_{8}$ Useful approximations to functions based on power series ..... 193
$\mathrm{C}_{8}$ Self-similarity and fractal structures ..... 196
$\mathrm{D}_{8}$ End-of-chapter problems ..... 199
9 Fundamentals of probability and statistics ..... 207
9.1 Probability distributions of discrete variables ..... 207
9.2 Probability distributions of continuous variables ..... 216
9.3 Probability distributions in the physical sciences ..... 226
A9 Connecting the gaussian and binomial probability distributions ..... 232
B9 Uniform distributions of independent random variables ..... 233
C9 Gaussian distributions of independent random variables ..... 235
$D_{9}$ Three definitions of Pythagorean means ..... 236
E9 Propagation of error through total differentials and Taylor series ..... 237
F9 End-of-chapter problems ..... 240
10 Ordinary differential equations ..... 245
10.1 First order ordinary differential equations ..... 245
10.2 Applications of first order differential equations ..... 250
$\mathrm{A}_{10}$ Functions derived from exact differentials and integrating factors ..... 257
$\mathrm{B}_{10}$ End-of-chapter problems ..... 259
11 More ordinary differential equations ..... 263
11.1 Second order ordinary differential equations ..... 263
11.2 Applications of second order differential equations ..... 267
11.3 Power series solutions to differential equations ..... 273
$\mathrm{A}_{11}$ Quantum theory of a particle in a box ..... 279
$\mathrm{B}_{11}$ Classical theory of motion of a harmonic oscillator ..... 281
$\mathrm{C}_{11}$ Classical theory of a damped harmonic oscillator ..... 284
$\mathrm{D}_{11}$ Power series solutions to special equations in quantum theory ..... 288
$\mathrm{E}_{11}$ End-of-chapter problems ..... 297
12 Partial differential equations ..... 303
12.1 The classical heat equation ..... 303
12.2 The classical diffusion equation ..... 307
12.3 The classical wave equation ..... 313
$A_{12}$ Survey of partial differential equations in the physical sciences ..... 320
$B_{12}$ End-of-chapter problems ..... 324
13 Fourier series, Fourier transforms, and harmonic analysis ..... 329
13.1 Fourier series ..... 329
13.2 Fourier transforms ..... 350
$\mathrm{A}_{13}$ Orthogonal vectors and orthogonal functions ..... 362
$B_{13}$ Building orthogonal polynomials using Gram-Schmidt orthogonalization ..... 369
$\mathrm{C}_{13}$ Deriving Fourier integral transforms from complex Fourier series ..... 373
$\mathrm{D}_{13}$ End-of-chapter problems ..... 375
14 Matrices and matrix algebra ..... 383
14.1 Vectors, matrices, and determinants ..... 383
14.2 Basic properties of matrix algebra ..... 392
14.3 Solving coupled linear equations using Cramer's rule ..... 406
$\mathrm{A}_{14}$ Applications of determinants in Hückel theory ..... 410
$\mathrm{B}_{14}$ Solving coupled linear equations using Gaussian elimination ..... 411
$\mathrm{C}_{14}$ Finding the matrix inverse using Gauss-Jordan elimination ..... 414
$\mathrm{D}_{14}$ End-of-chapter problems ..... 417
15 Eigenvalues and eigenvectors ..... 425
15.1 Matrix eigenvalues and eigenvectors ..... 425
15.2 Matrix methods for coupled differential equations ..... 432
15.3 Scalar operators and eigenfunctions ..... 443
$\mathrm{A}_{15}$ End-of-chapter problems ..... 446
16 Geometric transforms and molecular symmetry ..... 457
16.1 Eigenvectors, geometric transforms, and symmetry ..... 457
16.2 Matrix transformations and molecular symmetry ..... 464
16.3 Point groups and the symmetry decision tree ..... 471
$\mathrm{A}_{16}$ End-of-chapter problems ..... 480
Supplements ..... 487
$\mathrm{S}_{1}$ Notes on notation ..... 487
$S_{2}$ Formulas from geometry ..... 489
$S_{3}$ Formulas from trigonometry ..... 491
$S_{4}$ Table of power series ..... 493
$S_{5}$ Table of definite integrals ..... 494
$\mathrm{S}_{6}$ Table of indefinite integrals ..... 495
$S_{7}$ Error function table ..... 502
$\mathrm{S}_{8}$ Complementary error function table ..... 503
Sg Table of Fourier transform pairs ..... 504
$\mathrm{S}_{10}$ Answers to end-of-chapter problems ..... 506
Bibliography ..... 531
Index ..... 533
Colophon ..... 537

